lambdas and streams
Introducing the Streams APl

The Streams AP 1s a set of operations we can perform on a collection, so when we
read these operations in our code, we can understand what we’re trying to do with
the collection data. If you were successful in the “Who Does What?” exercise on the

previous page (the complete answers are at the end of this chapter), you should have
scen that the names of the operations describe what they do.

(These ave \')us’c a few of
the mekhods n Chream.-
Lheve ave many move.

java.util.stream.Stream

> distinct() ‘crinct elements
stream<? s a stream consisting of the distine
Return

dicate)
. 7 super T> preai® icate.
redicate<: ven predica
Stream<T> ﬁ‘te:r(nPOf the elements that match the gi
Returns a stré

These generits do look
a little intimidatin
but don't ?anic! we'll
use the map method
later, and \/ou'” see it's

not as complicated as
it seems.

. ize) max-
< it (long maxSi longer than
Stream<T> ||:n(::§n of g\ements truncated to be N0 9
Returns a str
Size in length.

ds R> mapper)
m<R> map(Function<? super T,? exten
<R> Strea

i ion to the
i iven function
m with the results of applying theg
Returns a strea.
elements of this stream.

Stream<T> skip(long n)

Re“l]l\sas“e ||l()‘ ”le‘e”la“l“lgee”le“tso‘ thlS a a
dlSCadeIg the hISt n e\e”'e“ts O[t\le St‘ea‘“.

Stream<T> sorted()

ing to
i orted according
of the elements of this stream, 3
m

Returnsa strea

natural order.

|/ more

Relax

You don’t need to worry too

Streams, and Jamhda expressions,
were introduced in Java 8.

much about the generic types

on the Stream methods; you’ll
see that using Streams “just
works” the way you’d expect.

In case you are interested:
* <T> is usually the Type of the object in the stream.

* <R> is usually the type of the Result of the method.

you are here» 375

building blocks

Getting a result from a Stream

Yes, we've thrown a let of new words at you: streams; intermediate operations; terminal operations...
And we still haven’t told you what streams can do!

To start to get a feel for what we can do with streams, we going to show code for a simple use
of the Strecams API. After that, we’ll step back and learn more about what we’re seeing here.

List<String> strings = List.of("I", "am", "a", "list", "of", "Strings");

Stream<String> stream = strings.stream() ;
Stream<String> limit = stream.limit (4);

long result = limit.count(); <=— Call the tount terminal
System.out.println("result = " + result); operator, and store the output

in a variable called vesult

File_Edit Window Help WellDuh
%java LimitWithStream

result = 4

This works, but it’s not very useful. One of the most common things to do with Streams
1s put the results into another type of collection. The API documentation for this method
might seem intimidating with all the generic types, but the simplest case is straightforward:

Collether
. : . fuens 3 ks

The stream contained Strings, Terming| opgy 3t s mekhod ¥ tne vesw

o the output object vill also il couufﬁf :’:tﬁzf. Tsc\\‘\‘;:wx\\ ov’.“ﬁ 5 List

tontain Strings. some sort of Ob\jecz‘ nto Yne stred™ ™
List<String> result = limit.collect(Collectors.toList())

A
- aoiipéu'(: the vesults veturn tommon Collettor mp

System.out.println("result = " + result);

Re]ax We’ll see collect() and the

Collectors in more detail
later.

File Edit Window Help FinallyAResult
%$java LimitWithStream

T'or now, collect (Collectors.
toList) is a magic incantation
result = [I, am, a, list] to get the output of the stream
pipeline in a List.

Finally, we have a result that looks like something we would have expected: we had a

List of Strings, and we asked to limit that list to the first four items and then collect
those four items into a new List.

378 chapter 12

lambdas and streams

Stream operations are building blocks

We wrote a lot of code just to output the first four elements in the list. We also
introduced a lot of new terminology: streams, intermediate operations, and terminal
operations. Let’s put all this together: you create a stream pipeline from three
different types of building blocks.

@ Get the Stream from a source collection.

_J .stream()

eolleetion —

Call zero or more intermediate operations on the
Stream.

@ Output the results with a terminal operation. FIL—_S—_L—L,

.collect() r,_—‘_ 7 ou*{:‘?u‘(:

You need at least the first and last pieces of the puzzle to use the Streams APIL
However, you don’t need to assign cach step to its own variable (which we were doing on
the last page). In fact, the operations are designed to be chained, so you can call one
stage straight after the previous one, without putting each stage in its own variable.

On the last page, all the building blocks for the stream were highlighted (stream, limit,
count, collect). We can take these building blocks and rewrite the limit-and-collect
operation in this way:

List<String> strings = List.of("I", "am", "a", "list", "of", "Strings");

Get the stream for the colleetion

List<String> result = strings.stream() Cet 3 limit) veturn 8 maximum of

_—>|.1limit (4) = & vesults from the stream

Formatted to align eath oycra{jon .collect (Collectors.toList()) ;

diveetly underneath the one above R Returns th

4 e vesults of h
to elearly show each stage. opevation as 3 List the
System.out.println("result = " + result);

you are here» 379

