
4.2	Object:	The	Cosmic	Superclass
Every	class	in	Java	directly	or	indirectly	extends	the	class	Object.	When	a
class	has	no	explicit	superclass,	it	implicitly	extends	Object.	For	example,
public	class	Employee	{	...	}

is	equivalent	to
Click	here	to	view	code	image

public	class	Employee	extends	Object	{	...	}

The	Object	class	defines	methods	that	are	applicable	to	any	Java	object	(see
Table	4-1).	We	will	examine	several	of	these	methods	in	detail	in	the	following
sections.

Table	4-1	The	Methods	of	the	java.lang.Object	Class

Method Description
String

toString()

Yields	a	string	representation	of	this	object,	by	default	the
name	of	the	class	and	the	hash	code.

boolean

equals(Object

other)

Returns	true	if	this	object	should	be	considered	equal	to
other,	false	if	other	is	null	or	different	from
other.	By	default,	two	objects	are	equal	if	they	are
identical.	Instead	of	obj.equals(other),	consider	the
null-safe	alternative	Objects.equals(obj,	other).

int

hashCode()

Yields	a	hash	code	for	this	object.	Equal	objects	must	have
the	same	hash	code.	Unless	overridden,	the	hash	code	is
assigned	in	some	way	by	the	virtual	machine.

Class<?>

getClass()

Yields	the	Class	object	describing	the	class	to	which	this
object	belongs.

protected

Object

clone()

Makes	a	copy	of	this	object.	By	default,	the	copy	is	shallow.

protected

void

finalize()

This	method	is	called	when	this	object	is	reclaimed	by	the
garbage	collector.	Don't	override	it.

wait,	notify,
notifyAll See	Chapter	10.



	Note

Arrays	are	classes.	Therefore,	it	is	legal	to	convert	an	array,	even	a
primitive	type	array,	to	a	reference	of	type	Object.

4.2.1	The	toString	Method
An	important	method	in	the	Object	class	is	the	toString	method	that
returns	a	string	description	of	an	object.	For	example,	the	toString	method	of
the	Point	class	returns	a	string	like	this:
java.awt.Point[x=10,y=20]

Many	toString	methods	follow	this	format:	the	name	of	the	class,	followed
by	the	instance	variables	enclosed	in	square	brackets.	Here	is	such	an
implementation	of	the	toString	method	of	the	Employee	class:
Click	here	to	view	code	image

public	String	toString()	{

return	getClass().getName()	+	"[name="	+	name

+	",salary="	+	salary	+	"]";

}

By	calling	getClass().getName()	instead	of	hardwiring	the	string
"Employee",	this	method	does	the	right	thing	for	subclasses	as	well.
In	a	subclass,	call	super.toString()	and	add	the	instance	variables	of	the
subclass,	in	a	separate	pair	of	brackets:
Click	here	to	view	code	image

public	class	Manager	extends	Employee	{

...

public	String	toString()	{

return	super.toString()	+	"[bonus="	+	bonus	+	"]";

}

}

Whenever	an	object	is	concatenated	with	a	string,	the	Java	compiler
automatically	invokes	the	toString	method	on	the	object.	For	example:
Click	here	to	view	code	image

Point	p	=	new	Point(10,	20);

String	message	=	"The	current	position	is	"	+	p;

//	Concatenates	with	p.toString()



	Tip

Instead	of	writing	x.toString(),	you	can	write	""	+	x.	This
expression	even	works	if	x	is	null	or	a	primitive	type	value.

The	Object	class	defines	the	toString	method	to	print	the	class	name	and
the	hash	code	(see	Section	4.2.3,	“The	hashCode	Method,”	page	150).	For
example,	the	call
Click	here	to	view	code	image

System.out.println(System.out)

produces	an	output	that	looks	like	java.io.PrintStream@2f6684	since
the	implementor	of	the	PrintStream	class	didn’t	bother	to	override	the
toString	method.

	Caution

Arrays	inherit	the	toString	method	from	Object,	with	the	added
twist	that	the	array	type	is	printed	in	an	archaic	format.	For	example,	if
you	have	the	array

Click	here	to	view	code	image

int[]	primes	=	{	2,	3,	5,	7,	11,	13	};

then	primes.toString()	yields	a	string	such	as	"[I@1a46e30".
The	prefix	[I	denotes	an	array	of	integers.
The	remedy	is	to	call	Arrays.toString(primes)	instead,	which
yields	the	string	"[2,	3,	5,	7,	11,	13]".	To	correctly	print
multidimensional	arrays	(that	is,	arrays	of	arrays),	use
Arrays.deepToString.

4.2.2	The	equals	Method
The	equals	method	tests	whether	one	object	is	considered	equal	to	another.
The	equals	method,	as	implemented	in	the	Object	class,	determines	whether
two	object	references	are	identical.	This	is	a	pretty	reasonable	default—if	two
objects	are	identical,	they	should	certainly	be	equal.	For	quite	a	few	classes,
nothing	else	is	required.	For	example,	it	makes	little	sense	to	compare	two



Scanner	objects	for	equality.
Override	the	equals	method	only	for	state-based	equality	testing,	in	which	two
objects	are	considered	equal	when	they	have	the	same	contents.	For	example,	the
String	class	overrides	equals	to	check	whether	two	strings	consist	of	the
same	characters.

	Caution

Whenever	you	override	the	equals	method,	you	must	provide	a
compatible	hashCode	method	as	well—see	Section	4.2.3,	“The
hashCode	Method”	(page	150).

Suppose	we	want	to	consider	two	objects	of	a	class	Item	equal	if	their
descriptions	and	prices	match.	Here	is	how	you	can	implement	the	equals
method:
Click	here	to	view	code	image

public	class	Item	{

private	String	description;

private	double	price;

...

public	boolean	equals(Object	otherObject)	{

//	A	quick	test	to	see	if	the	objects	are	identical
if	(this	==	otherObject)	return	true;

//	Must	return	false	if	the	parameter	is	null
if	(otherObject	==	null)	return	false;

//	Check	that	otherObject	is	an	Item
if	(getClass()	!=	otherObject.getClass())	return	false;

//	Test	whether	the	instance	variables	have	identical	values
Item	other	=	(Item)	otherObject;

return	Objects.equals(description,	other.description)

&&	price	==	other.price;

}

public	int	hashCode()	{	...	}	//	See	Section	4.2.3
}

There	are	a	number	of	routine	steps	that	you	need	to	go	through	in	an	equals
method:
1.	It	is	common	for	equal	objects	to	be	identical,	and	that	test	is	very
inexpensive.

2.	Every	equals	method	is	required	to	return	false	when	comparing	against



null.
3.	Since	the	equals	method	overrides	Object.equals,	its	parameter	is	of
type	Object,	and	you	need	to	cast	it	to	the	actual	type	so	you	can	look	at	its
instance	variables.	Before	doing	that,	make	a	type	check,	either	with	the
getClass	method	or	with	the	instanceof	operator.

4.	Finally,	compare	the	instance	variables.	Use	==	for	primitive	types.	However,
for	double	values,	if	you	are	concerned	about	±∞	or	NaN,	use
Double.equals.	For	objects,	use	Objects.equals,	a	null-safe	version
of	the	equals	method.	The	call	Objects.equals(x,	y)	returns
false	if	x	is	null,	whereas	x.equals(y)	would	throw	an	exception.

	Tip

If	you	have	instance	variables	that	are	arrays,	use	the	static
Arrays.equals	method	to	check	that	the	arrays	have	equal	length
and	the	corresponding	array	elements	are	equal.

When	you	define	the	equals	method	for	a	subclass,	first	call	equals	on	the
superclass.	If	that	test	doesn’t	pass,	the	objects	can’t	be	equal.	If	the	instance
variables	of	the	superclass	are	equal,	then	you	are	ready	to	compare	the	instance
variables	of	the	subclass.
Click	here	to	view	code	image

public	class	DiscountedItem	extends	Item	{

private	double	discount;

...

public	boolean	equals(Object	otherObject)	{

if	(!super.equals(otherObject))	return	false;

DiscountedItem	other	=	(DiscountedItem)	otherObject;

return	discount	==	other.discount;

}

public	int	hashCode()	{	...	}

}

Note	that	the	getClass	test	in	the	superclass	fails	if	otherObject	is	not	a
DiscountedItem.
How	should	the	equals	method	behave	when	comparing	values	that	belong	to
different	classes?	This	has	been	an	area	of	some	controversy.	In	the	preceding
example,	the	equals	method	returns	false	if	the	classes	don’t	match	exactly.
But	many	programmers	use	an	instanceof	test	instead:



Click	here	to	view	code	image

if	(!(otherObject	instanceof	Item))	return	false;

This	leaves	open	the	possibility	that	otherObject	can	belong	to	a	subclass.
For	example,	you	can	compare	an	Item	with	a	DiscountedItem.
However,	that	kind	of	comparison	doesn't	usually	work.	One	of	the	requirements
of	the	equals	method	is	that	it	is	symmetric:	For	non-null	x	and	y,	the	calls
x.equals(y)	and	y.equals(x)	need	to	return	the	same	value.
Now	suppose	x	is	an	Item	and	y	a	DiscountedItem.	Since	x.equals(y)
doesn't	consider	discounts,	neither	can	y.equals(x).

	Note

The	Java	API	contains	over	150	implementations	of	equals	methods,
with	a	mixture	of	instanceof	tests,	calling	getClass,	catching	a
ClassCastException,	or	doing	nothing	at	all.	Check	out	the
documentation	of	the	java.sql.Timestamp	class,	where	the
implementors	note	with	some	embarrassment	that	the	Timestamp
class	inherits	from	java.util.Date,	whose	equals	method	uses
an	instanceof	test,	and	it	is	therefore	impossible	to	override
equals	to	be	both	symmetric	and	accurate.

There	is	one	situation	where	the	instanceof	test	makes	sense:	if	the	notion	of
equality	is	fixed	in	the	superclass	and	never	varies	in	a	subclass.	For	example,
this	is	the	case	if	we	compare	employees	by	ID.	In	that	case,	make	an
instanceof	test	and	declare	the	equals	method	as	final.
Click	here	to	view	code	image

public	class	Employee	{

private	int	id;

...

public	final	boolean	equals(Object	otherObject)	{

if	(this	==	otherObject)	return	true;

if	(!(otherObject	instanceof	Employee))	return	false;

Employee	other	=	(Employee)	otherObject;

return	id	==	other.id;

}

public	int	hashCode()	{	...	}

}



4.2.3	The	hashCode	Method
A	hash	code	is	an	integer	that	is	derived	from	an	object.	Hash	codes	should	be
scrambled—if	x	and	y	are	two	unequal	objects,	there	should	be	a	high
probability	that	x.hashCode()	and	y.hashCode()	are	different.	For
example,	"Mary".hashCode()	is	2390779,	and	"Myra".hashCode()	is
2413819.
The	String	class	uses	the	following	algorithm	to	compute	the	hash	code:
Click	here	to	view	code	image

int	hash	=	0;

for	(int	i	=	0;	i	<	length();	i++)

hash	=	31	*	hash	+	charAt(i);

The	hashCode	and	equals	methods	must	be	compatible:	If	x.equals(y),
then	it	must	be	the	case	that	x.hashCode()	==	y.hashCode().	As	you
can	see,	this	is	the	case	for	the	String	class	since	strings	with	equal	characters
produce	the	same	hash	code.
The	Object.hashCode	method	derives	the	hash	code	in	some
implementation-dependent	way.	It	can	be	derived	from	the	object's	memory
location,	or	a	number	(sequential	or	pseudorandom)	that	is	cached	with	the
object,	or	a	combination	of	both.	Since	Object.equals	tests	for	identical
objects,	the	only	thing	that	matters	is	that	identical	objects	have	the	same	hash
code.
If	you	redefine	the	equals	method,	you	will	also	need	to	redefine	the
hashCode	method	to	be	compatible	with	equals.	If	you	don't,	and	users	of
your	class	insert	objects	into	a	hash	set	or	hash	map,	they	might	get	lost!
In	your	hashCode	method,	simply	combine	the	hash	codes	of	the	instance
variables.	For	example,	here	is	a	hashCode	method	for	the	Item	class:
Click	here	to	view	code	image

class	Item	{

...

public	int	hashCode()	{

return	Objects.hash(description,	price);

}

}

The	Objects.hash	varargs	method	computes	the	hash	codes	of	its	arguments
and	combines	them.	The	method	is	null-safe.
If	your	class	has	instance	variables	that	are	arrays,	compute	their	hash	codes	first



with	the	static	Arrays.hashCode	method,	which	computes	a	hash	code
composed	of	the	hash	codes	of	the	array	elements.	Pass	the	result	to
Objects.hash.

	Caution

In	an	interface,	you	can	never	make	a	default	method	that	redefines	one
of	the	methods	in	the	Object	class.	In	particular,	an	interface	can’t
define	a	default	method	for	toString,	equals,	or	hashCode.	As	a
consequence	of	the	“classes	win”	rule	(see	Section	4.1.11,	“Inheritance
and	Default	Methods,”	page	144),	such	a	method	could	never	win
against	Object.toString,	Object.equals,	or
Object.hashCode.

4.2.4	Cloning	Objects
You	have	just	seen	the	“big	three”	methods	of	the	Object	class	that	are
commonly	overridden:	toString,	equals,	and	hashCode.	In	this	section,
you	will	learn	how	to	override	the	clone	method.	As	you	will	see,	this	is
complex,	and	it	is	also	rarely	necessary.	Don't	override	clone	unless	you	have	a
good	reason	to	do	so.	Less	than	five	percent	of	the	classes	in	the	standard	Java
library	implement	clone.
The	purpose	of	the	clone	method	is	to	make	a	“clone”	of	an	object—a	distinct
object	with	the	same	state	of	the	original.	If	you	mutate	one	of	the	objects,	the
other	stays	unchanged.
Click	here	to	view	code	image

Employee	cloneOfFred	=	fred.clone();

cloneOfFred.raiseSalary(10);	//	fred	unchanged

The	clone	method	is	declared	as	protected	in	the	Object	class,	so	you
must	override	it	if	you	want	users	of	your	class	to	clone	instances.
The	Object.clone	method	makes	a	shallow	copy.	It	simply	copies	all
instance	variables	from	the	original	to	the	cloned	object.	That	is	fine	if	the
variables	are	primitive	or	immutable.	But	if	they	aren't,	then	the	original	and	the
clone	share	mutable	state,	which	can	be	a	problem.
Consider	a	class	for	email	messages	that	has	a	list	of	recipients.
Click	here	to	view	code	image



public	final	class	Message	{

private	String	sender;

private	ArrayList<String>	recipients;

private	String	text;

...

public	void	addRecipient(String	recipient)	{	...	};

}

If	you	make	a	shallow	copy	of	a	Message	object,	both	the	original	and	the
clone	share	the	recipients	list	(see	Figure	4-1):
Click	here	to	view	code	image

Message	specialOffer	=	...;

Message	cloneOfSpecialOffer	=	specialOffer.clone();

Figure	4-1	A	shallow	copy	of	an	object

If	either	object	changes	the	recipient	list,	the	change	is	reflected	in	the	other.
Therefore,	the	Message	class	needs	to	override	the	clone	method	to	make	a
deep	copy.
It	may	also	be	that	cloning	is	impossible	or	not	worth	the	trouble.	For	example,	it
would	be	very	challenging	to	clone	a	Scanner	object.
In	general,	when	you	implement	a	class,	you	need	to	decide	whether
1.	You	do	not	want	to	provide	a	clone	method,	or
2.	The	inherited	clone	method	is	acceptable,	or
3.	The	clone	method	should	make	a	deep	copy.
For	the	first	option,	simply	do	nothing.	Your	class	will	inherit	the	clone
method,	but	no	user	of	your	class	will	be	able	to	call	it	since	it	is	protected.
To	choose	the	second	option,	your	class	must	implement	the	Cloneable
interface.	This	is	an	interface	without	any	methods,	called	a	tagging	or	marker



interface.	(Recall	that	the	clone	method	is	defined	in	the	Object	class.)	The
Object.clone	method	checks	that	this	interface	is	implemented	before
making	a	shallow	copy,	and	throws	a	CloneNotSupportedException
otherwise.
You	will	also	want	to	raise	the	scope	of	clone	from	protected	to	public,
and	change	the	return	type.
Finally,	you	need	to	deal	with	the	CloneNotSupportedException.	This	is
a	checked	exception,	and	as	you	will	see	in	Chapter	5,	you	must	either	declare	or
catch	it.	If	your	class	is	final,	you	can	catch	it.	Otherwise,	declare	the
exception	since	it	is	possible	that	a	subclass	might	again	want	to	throw	it.
Click	here	to	view	code	image

public	class	Employee	implements	Cloneable	{

...

public	Employee	clone()	throws	CloneNotSupportedException	{

return	(Employee)	super.clone();

}

}

The	cast	(Employee)	is	necessary	since	the	return	type	of	Object.clone	is
Object.
The	third	option	for	implementing	the	clone	method,	in	which	a	class	needs	to
make	a	deep	copy,	is	the	most	complex	case.	You	don't	need	to	use	the
Object.clone	method	at	all.	Here	is	a	simple	implementation	of
Message.clone:
Click	here	to	view	code	image

public	Message	clone()	{

Message	cloned	=	new	Message(sender,	text);

cloned.recipients	=	new	ArrayList<>(recipients);

return	cloned;

}

Alternatively,	you	can	call	clone	on	the	superclass	and	the	mutable	instance
variables.
The	ArrayList	class	implements	the	clone	method,	yielding	a	shallow	copy.
That	is,	the	original	and	cloned	list	share	the	element	references.	That	is	fine	in
our	case	since	the	elements	are	strings.	If	not,	we	would	have	had	to	clone	each
element	as	well.
However,	for	historical	reasons,	the	ArrayList.clone	method	has	return
type	Object.	You	need	to	use	a	cast.



Click	here	to	view	code	image

cloned.recipients	=	(ArrayList<String>)	recipients.clone();	//	Warning

Unhappily,	as	you	will	see	in	Chapter	6,	that	cast	cannot	be	fully	checked	at
runtime,	and	you	will	get	a	warning.	You	can	suppress	the	warning	with	an
annotation,	but	that	annotation	can	only	be	attached	to	a	declaration	(see	Chapter
12).	Here	is	the	complete	method	implementation:
Click	here	to	view	code	image

public	Message	clone()	{

try	{

Message	cloned	=	(Message)	super.clone();

@SuppressWarnings("unchecked")	ArrayList<String>	clonedRecipients

=	(ArrayList<String>)	recipients.clone();

cloned.recipients	=	clonedRecipients;

return	cloned;

}	catch	(CloneNotSupportedException	ex)	{

return	null;	//	Can't	happen
}

}

In	this	case,	the	CloneNotSupportedException	cannot	happen	since	the
Message	class	is	Cloneable	and	final,	and	ArrayList.clone	does
not	throw	the	exception.

	Note

Arrays	have	a	public	clone	method	whose	return	type	is	the	same	as
the	type	of	the	array.	For	example,	if	recipients	had	been	an	array,
not	an	array	list,	you	could	have	cloned	it	as

Click	here	to	view	code	image

cloned.recipients	=	recipients.clone();	//	No	cast	required

4.3	Enumerations
You	saw	in	Chapter	1	how	to	define	enumerated	types.	Here	is	a	typical
example,	defining	a	type	with	exactly	four	instances:
Click	here	to	view	code	image

public	enum	Size	{	SMALL,	MEDIUM,	LARGE,	EXTRA_LARGE	};

In	the	following	sections,	you	will	see	how	to	work	with	enumerations.


