
Chapter	10.	Concurrent	Programming

Topics	in	This	Chapter
	10.1	Concurrent	Tasks
	10.2	Asynchronous	Computations
	10.3	Thread	Safety
	10.4	Parallel	Algorithms
	10.5	Threadsafe	Data	Structures
	10.6	Atomic	Counters	and	Accumulators
	10.7	Locks	and	Conditions
	10.8	Threads
	10.9	Processes
	Exercises

Java	was	one	of	the	first	mainstream	programming	languages	with	built-in
support	for	concurrent	programming.	Early	Java	programmers	were	enthusiastic
about	how	easy	it	was	to	load	images	in	background	threads	or	implement	a	web
server	that	serves	multiple	requests	concurrently.	At	the	time,	the	focus	was	on
keeping	a	processor	busy	while	some	tasks	spend	their	time	waiting	for	the
network.	Nowadays,	most	computers	have	multiple	processors	or	cores,	and
programmers	worry	about	keeping	them	all	busy.
In	this	chapter,	you	will	learn	how	to	divide	computations	into	concurrent	tasks
and	how	to	execute	them	safely.	My	focus	is	on	the	needs	of	application
programmers,	not	system	programmers	who	write	web	servers	or	middleware.
For	that	reason,	I	arranged	the	information	in	this	chapter	so	that	I	can,	as	much
as	possible,	first	show	you	the	tools	that	you	should	be	using	in	your	work.	I
cover	the	low-level	constructs	later	in	the	chapter.	It	is	useful	to	know	about
these	low-level	details	so	that	you	get	a	feel	for	the	costs	of	certain	operations.
But	it	is	best	to	leave	low-level	thread	programming	to	the	experts.	If	you	want
to	become	one	of	them,	I	highly	recommend	the	excellent	book	Java
Concurrency	in	Practice	by	Brian	Goetz	et	al.	[Addison-Wesley,	2006].
The	key	points	of	this	chapter	are:
1.	A	Runnable	describes	a	task	that	can	be	executed	asynchronously	but	does



not	return	a	result.
2.	An	ExecutorService	schedules	tasks	instances	for	execution.
3.	A	Callable	describes	a	task	that	can	be	executed	asynchronously	and
yields	a	result.

4.	You	can	submit	one	or	more	Callable	instances	to	an
ExecutorService	and	combine	the	results	when	they	are	available.

5.	When	multiple	threads	operate	on	shared	data	without	synchronization,	the
result	is	unpredictable.

6.	Prefer	using	parallel	algorithms	and	threadsafe	data	structures	over
programming	with	locks.

7.	Parallel	streams	and	array	operations	automatically	and	safely	parallelize
computations.

8.	A	ConcurrentHashMap	is	a	threadsafe	hash	table	that	allows	atomic
update	of	entries.

9.	You	can	use	AtomicLong	for	a	lock-free	shared	counter,	or	use
LongAdder	if	contention	is	high.

10.	A	lock	ensures	that	only	one	thread	at	a	time	executes	a	critical	section.
11.	An	interruptible	task	should	terminate	when	the	interrupted	flag	is	set	or	an
InterruptedException	occurs.

12.	A	long-running	task	should	not	block	the	user-interface	thread	of	a	program,
but	progress	and	final	updates	need	to	occur	in	the	user-interface	thread.

13.	The	Process	class	lets	you	execute	a	command	in	a	separate	process	and
interact	with	the	input,	output,	and	error	streams.

10.1	Concurrent	Tasks
When	you	design	a	concurrent	program,	you	need	to	think	about	the	tasks	that
can	be	run	together.	In	the	following	sections,	you	will	see	how	to	execute	tasks
concurrently.

10.1.1	Running	Tasks
In	Java,	the	Runnable	interface	describes	a	task	you	want	to	run,	perhaps
concurrently	with	others.
public	interface	Runnable	{

void	run();

}



Like	all	methods,	the	run	method	is	executed	in	a	thread.	A	thread	is	a
mechanism	for	executing	a	sequence	of	instructions,	usually	provided	by	the
operating	system.	Multiple	threads	run	concurrently,	by	using	separate
processors	or	different	time	slices	on	the	same	processor.
If	you	want	to	execute	a	Runnable	in	a	separate	thread,	you	could	spawn	a
thread	just	for	this	Runnable,	and	you	will	see	how	to	do	that	in	Section
10.8.1.	“Starting	a	Thread”	(page	363).	But	in	practice,	it	doesn't	usually	make
sense	to	have	a	one-to-one	relationship	between	tasks	and	threads.	When	tasks
are	short-lived,	you	want	to	run	many	of	them	on	the	same	thread,	so	you	don't
waste	the	time	it	takes	to	start	a	thread.	When	your	tasks	are	computationally
intensive,	you	just	want	one	thread	per	processor	instead	of	one	thread	per	task,
to	avoid	the	overhead	of	switching	among	threads.	You	do	not	want	to	think	of
these	issues	when	you	design	tasks,	and	therefore,	it	is	best	to	separate	tasks	and
task	scheduling.
In	the	Java	concurrency	library,	an	executor	service	schedules	and	executes
tasks,	choosing	the	threads	on	which	to	run	them.
Click	here	to	view	code	image

Runnable	task	=	()	->	{	...	};

ExecutorService	executor	=	...;

executor.execute(task);

The	Executors	class	has	factory	methods	for	executor	services	with	different
scheduling	policies.	The	call
Click	here	to	view	code	image

exec	=	Executors.newCachedThreadPool();

yields	an	executor	service	optimized	for	programs	with	many	tasks	that	are	short
lived	or	spend	most	of	their	time	waiting.	Each	task	is	executed	on	an	idle	thread
if	possible,	but	a	new	thread	is	allocated	if	all	threads	are	busy.	There	is	no
bound	on	the	number	of	concurrent	threads.	Threads	that	are	idle	for	an	extended
time	are	terminated.
The	call
Click	here	to	view	code	image

exec	=	Executors.newFixedThreadPool(nthreads);

yield	a	pool	with	a	fixed	number	of	threads.	When	you	submit	a	task,	it	is
queued	up	until	a	thread	becomes	available.	This	is	a	good	choice	to	use	for
computationally	intensive	tasks,	or	to	limit	the	resource	consumption	of	a



service.	You	can	derive	the	number	of	threads	from	the	number	of	available
processors,	which	you	obtain	as
Click	here	to	view	code	image

int	processors	=	Runtime.getRuntime().availableProcessors();

Now	go	ahead	and	run	the	concurrency	demo	program	in	the	book's	companion
code.	It	runs	two	tasks	concurrently.
Click	here	to	view	code	image

public	static	void	main(String[]	args)	{

Runnable	hellos	=	()	->	{

for	(int	i	=	1;	i	<=	1000;	i++)

System.out.println("Hello	"	+	i);

};

Runnable	goodbyes	=	()	->	{

for	(int	i	=	1;	i	<=	1000;	i++)

System.out.println("Goodbye	"	+	i);

};

ExecutorService	executor	=	Executors.newCachedThreadPool();

executor.execute(hellos);

executor.execute(goodbyes);

}

Run	the	program	a	few	times	to	see	how	the	outputs	are	interleaved.
Goodbye	1

...

Goodbye	871

Goodbye	872

Hello	806

Goodbye	873

Goodbye	874

Goodbye	875

Goodbye	876

Goodbye	877

Goodbye	878

Goodbye	879

Goodbye	880

Goodbye	881

Hello	807

Goodbye	882

...

Hello	1000

	Note

You	may	note	that	the	program	waits	a	bit	after	the	last	printout.	It



terminates	when	the	pooled	threads	have	been	idle	for	a	while	and	the
executor	service	terminates	them.

	Caution

If	concurrent	tasks	try	to	read	or	update	a	shared	value,	the	result	may	be
unpredictable.	We	will	discuss	this	issue	in	detail	in	Section	10.3,
“Thread	Safety”	(page	341).	For	now,	we	will	assume	that	tasks	do	not
share	mutable	data.

10.1.2	Futures
A	Runnable	carries	out	a	task,	but	it	doesn't	yield	a	value.	If	you	have	a	task
that	computes	a	result,	use	the	Callable<V>	interface	instead.	Its	call
method,	unlike	the	run	method	of	the	Runnable	interface,	returns	a	value	of
type	V:
Click	here	to	view	code	image

public	interface	Callable<V>	{

V	call()	throws	Exception;

}

As	a	bonus,	the	call	method	can	throw	arbitrary	exceptions	which	can	be
relayed	to	the	code	that	obtains	the	result.
To	execute	a	Callable,	submit	it	to	an	executor	service:
Click	here	to	view	code	image

ExecutorService	executor	=	Executors.newFixedThreadPool();

Callable<V>	task	=	...;

Future<V>	result	=	executor.submit(task);

When	you	submit	the	task,	you	get	a	future—an	object	that	represents	a
computation	whose	result	will	be	available	at	some	future	time.	The	Future
interface	has	the	following	methods:
Click	here	to	view	code	image

V	get()	throws	InterruptedException,	ExecutionException

V	get(long	timeout,	TimeUnit	unit)

throws	InterruptedException,	ExecutionException,	TimeoutException;

boolean	cancel(boolean	mayInterruptIfRunning)

boolean	isCancelled()

boolean	isDone()



The	get	method	blocks	until	the	result	is	available	or	until	the	timeout	has	been
reached.	That	is,	the	thread	containing	the	call	does	not	progress	until	the
method	returns	normally	or	throws	an	exception.	If	the	call	method	yields	a
value,	the	get	method	returns	that	value.	If	the	call	method	throws	an
exception,	the	get	method	throws	an	ExecutionException	wrapping	the
thrown	exception.	If	the	timeout	has	been	reached,	the	get	method	throws	a
TimeoutException.
The	cancel	method	attempts	to	cancel	the	task.	If	the	task	isn't	already
running,	it	won't	be	scheduled.	Otherwise,	if	mayInterruptIfRunning	is
true,	the	thread	running	the	task	is	interrupted.

	Note

A	task	that	wants	to	be	interruptible	must	periodically	check	for
interruption	requests.	This	is	required	for	any	tasks	that	you'd	like	to
cancel	when	some	other	subtask	has	succeeded.	See	Section	10.8.2,
“Thread	Interruption”	(page	364)	for	more	details	on	interruption.

A	task	may	need	to	wait	for	the	result	of	multiple	subtasks.	Instead	of	submitting
each	subtask	separately,	you	can	use	the	invokeAll	method,	passing	a
Collection	of	Callable	instances.
For	example,	suppose	you	want	to	count	how	often	a	word	occurs	in	a	set	of
files.	For	each	file,	make	a	Callable<Integer>	that	returns	the	count	for
that	file.	Then	submit	them	all	to	the	executor.	When	all	tasks	have	completed,
you	get	a	list	of	the	futures	(all	of	which	are	done),	and	you	can	total	up	the
answers.
Click	here	to	view	code	image

String	word	=	...;

Set<Path>	paths	=	...;

List<Callable<Long>>	tasks	=	new	ArrayList<>();

for	(Path	p	:	paths)	tasks.add(

()	->	{	return	number	of	occurrences	of	word	in	p	});
List<Future<Long>>	results	=	executor.invokeAll(tasks);

//	This	call	blocks	until	all	tasks	have	completed

long	total	=	0;

for	(Future<Long>	result	:	results)	total	+=	result.get();

There	is	also	a	variant	of	invokeAll	with	a	timeout,	which	cancels	all	tasks
that	have	not	completed	when	the	timeout	is	reached.



	Note

If	it	bothers	you	that	the	calling	task	blocks	until	all	subtasks	are	done,
you	can	use	an	ExecutorCompletionService.	It	returns	the
futures	in	the	order	of	completion.

Click	here	to	view	code	image

ExecutorCompletionService	service

=	new	ExecutorCompletionService(executor);

for	(Callable<T>	task	:	tasks)	service.submit(task);

for	(int	i	=	0;	i	<	tasks.size();	i++)	{

Process	service.take().get()
Do	something	else
}

The	invokeAny	method	is	like	invokeAll,	but	it	returns	as	soon	as	any	one
of	the	submitted	tasks	has	completed	normally,	without	throwing	an	exception.	It
then	returns	the	value	of	its	Future.	The	other	tasks	are	cancelled.	This	is
useful	for	a	search	that	can	conclude	as	soon	as	a	match	has	been	found.	This
code	snippet	locates	a	file	containing	a	given	word:
Click	here	to	view	code	image

String	word	=	...;

Set<Path>	files	=	...;

List<Callable<Path>>	tasks	=	new	ArrayList<>();

for	(Path	p	:	files)	tasks.add(

()	->	{	if	(word	occurs	in	p)	return	p;	else	throw	...	});
Path	found	=	executor.invokeAny(tasks);

As	you	can	see,	the	ExecutorService	does	a	lot	of	work	for	you.	Not	only
does	it	map	tasks	to	threads,	but	it	also	deals	with	task	results,	exceptions,	and
cancellation.

	Note

Java	EE	provides	a	ManagedExecutorService	subclass	that	is
suitable	for	concurrent	tasks	in	a	Java	EE	environment.

10.2	Asynchronous	Computations
In	the	preceding	section,	our	approach	to	concurrent	computation	was	to	break
up	a	task	and	then	wait	until	all	pieces	have	completed.	But	waiting	is	not	always



a	good	idea.	In	the	following	sections,	you	will	see	how	to	implement	wait-free
or	asynchronous	computations.

10.2.1	Completable	Futures
When	you	have	a	Future	object,	you	need	to	call	get	to	obtain	the	value,
blocking	until	the	value	is	available.	The	CompletableFuture	class
implements	the	Future	interface,	and	it	provides	a	second	mechanism	for
obtaining	the	result.	You	register	a	callback	that	will	be	invoked	(in	some	thread)
with	the	result	once	it	is	available.
Click	here	to	view	code	image

CompletableFuture<String>	f	=	...;

f.thenAccept((String	s)	->	Process	the	result	s);

In	this	way,	you	can	process	the	result,	without	blocking,	as	soon	as	it	is
available.
There	are	a	few	API	methods	that	return	CompletableFuture	objects.	For
example,	the	HttpClient	class	can	fetch	a	web	page	asynchronously:
Click	here	to	view	code	image

HttpClient	client	=	HttpClient.newHttpClient();

HttpRequest	request	=	HttpRequest.newBuilder(new

URI(urlString)).GET().build();

CompletableFuture<HttpResponse<String>>	f	=	client.sendAsync(

request,	BodyHandler.asString());

To	run	a	task	asynchronously	and	obtain	a	CompletableFuture,	you	don't
submit	it	directly	to	an	executor	service.	Instead,	you	call	the	static	method
CompletableFuture.supplyAsync:
Click	here	to	view	code	image

CompletableFuture<String>	f	=	CompletableFuture.supplyAsync(

()	->	{	String	result;	Compute	the	result;	return	result;	},
executor);

If	you	omit	the	executor,	the	task	is	run	on	a	default	executor	(namely	the
executor	returned	by	ForkJoinPool.commonPool()).
Note	that	the	first	argument	of	this	method	is	a	Supplier<T>,	not	a
Callable<T>.	Both	interfaces	describe	functions	with	no	arguments	and	a
return	value	of	type	T,	but	a	Supplier	function	cannot	throw	a	checked
exception.
A	CompletableFuture	can	complete	in	two	ways:	either	with	a	result,	or



with	an	uncaught	exception.	In	order	to	handle	both	cases,	use	the
whenComplete	method.	The	supplied	function	is	called	with	the	result	(or
null	if	none)	and	the	exception	(or	null	if	none).
Click	here	to	view	code	image

f.whenComplete((s,	t)	->	{

if	(t	==	null)	{	Process	the	result	s;	}
else	{	Process	the	Throwable	t;	}
});

The	CompletableFuture	is	called	completable	because	you	can	manually
set	a	completion	value.	(In	other	concurrency	libraries,	such	an	object	is	called	a
promise).	Of	course,	when	you	create	a	CompletableFuture	with
supplyAsync,	the	completion	value	is	implicitly	set	when	the	task	has
finished.	But	setting	the	result	explicitly	gives	you	additional	flexibility.	For
example,	two	tasks	can	work	simultaneously	on	computing	an	answer:
Click	here	to	view	code	image

CompletableFuture<Integer>	f	=	new	CompletableFuture<>();

executor.execute(()	->	{

int	n	=	workHard(arg);

f.complete(n);

});

executor.execute(()	->	{

int	n	=	workSmart(arg);

f.complete(n);

});

To	instead	complete	a	future	with	an	exception,	call
Throwable	t	=	...;

f.completeExceptionally(t);

	Note

It	is	safe	to	call	complete	or	completeExceptionally	on	the
same	future	in	multiple	threads.	If	the	future	is	already	completed,	these
calls	have	no	effect.

The	isDone	method	tells	you	whether	a	Future	object	has	been	completed
(normally	or	with	an	exception).	In	the	preceding	example,	the	workHard	and
workSmart	methods	can	use	that	information	to	stop	working	when	the	result
has	been	determined	by	the	other	method.



	Caution

Unlike	a	plain	Future,	the	computation	of	a	CompletableFuture
is	not	interrupted	when	you	invoke	its	cancel	method.	Canceling
simply	sets	the	Future	object	to	be	completed	exceptionally,	with	a
CancellationException.	In	general,	this	makes	sense	since	a
CompletableFuture	may	not	have	a	single	thread	that	is
responsible	for	its	completion.	However,	this	restriction	also	applies	to
CompletableFuture	instances	returned	by	methods	such	as
supplyAsync,	which	could	in	principle	be	interrupted.	See	Exercise
27	for	a	workaround.

10.2.2	Composing	Completable	Futures
Nonblocking	calls	are	implemented	through	callbacks.	The	programmer	registers
a	callback	for	the	action	that	should	occur	after	a	task	completes.	Of	course,	if
the	next	action	is	also	asynchronous,	the	next	action	after	that	is	in	a	different
callback.	Even	though	the	programmer	thinks	in	terms	of	“first	do	step	1,	then
step	2,	then	step	3,”	the	program	logic	can	become	dispersed	in	“callback	hell.”
It	gets	even	worse	when	you	have	to	add	error	handling.	Suppose	step	2	is	“the
user	logs	in.”	You	may	need	to	repeat	that	step	since	the	user	can	mistype	the
credentials.	Trying	to	implement	such	a	control	flow	in	a	set	of	callbacks—or	to
understand	it	once	it	has	been	implemented—can	be	quite	challenging.
The	CompletableFuture	class	solves	this	problem	by	providing	a
mechanism	for	composing	asynchronous	tasks	into	a	processing	pipeline.
For	example,	suppose	we	want	to	extract	all	links	from	a	web	page	in	order	to
build	a	web	crawler.	Let's	say	we	have	a	method
Click	here	to	view	code	image

public	void	CompletableFuture<String>	readPage(URI	url)

that	yields	the	text	of	a	web	page	when	it	becomes	available.	If	the	method
Click	here	to	view	code	image

public	static	List<URI>	getLinks(String	page)

yields	the	URIs	in	an	HTML	page,	you	can	schedule	it	to	be	called	when	the
page	is	available:
Click	here	to	view	code	image

CompletableFuture<String>	contents	=	readPage(url);



CompletableFuture<List<URI>>	links	=

contents.thenApply(Parser::getLinks);

The	thenApply	method	doesn’t	block	either.	It	returns	another	future.	When
the	first	future	has	completed,	its	result	is	fed	to	the	getLinks	method,	and	the
return	value	of	that	method	becomes	the	final	result.
With	completable	futures,	you	just	specify	what	you	want	to	have	done	and	in
which	order.	It	won’t	all	happen	right	away,	of	course,	but	what	is	important	is
that	all	the	code	is	in	one	place.
Conceptually,	CompletableFuture	is	a	simple	API,	but	there	are	many
variants	of	methods	for	composing	completable	futures.	Let	us	first	look	at	those
that	deal	with	a	single	future	(see	Table	10-1).	(For	each	method	shown,	there
are	also	two	Async	variants	that	I	don’t	show.	One	of	them	uses	a	shared
ForkJoinPool,	and	the	other	has	an	Executor	parameter.)	In	the	table,	I
use	a	shorthand	notation	for	the	ponderous	functional	interfaces,	writing	T	->
U	instead	of	Function<?	super	T,	U>.	These	aren’t	actual	Java	types,	of
course.
You	have	already	seen	the	thenApply	method.	Suppose	f	is	a	function	that
receives	values	of	type	T	and	returns	values	of	type	U.	The	calls
Click	here	to	view	code	image

CompletableFuture<U>	future.thenApply(f);

CompletableFuture<U>	future.thenApplyAsync(f);

return	a	future	that	applies	the	function	f	to	the	result	of	future	when	it	is
available.	The	second	call	runs	f	in	yet	another	thread.
The	thenCompose	method,	instead	of	taking	a	function	mapping	the	type	T	to
the	type	U,	receives	a	function	mapping	T	to	CompletableFuture<U>.	That
sounds	rather	abstract,	but	it	can	be	quite	natural.	Consider	the	action	of	reading
a	web	page	from	a	given	URL.	Instead	of	supplying	a	method
Click	here	to	view	code	image

public	String	blockingReadPage(URI	url)

it	is	more	elegant	to	have	that	method	return	a	future:
Click	here	to	view	code	image

public	CompletableFuture<String>	readPage(URI	url)

Now,	suppose	we	have	another	method	that	gets	the	URL	from	user	input,
perhaps	from	a	dialog	that	won’t	reveal	the	answer	until	the	user	has	clicked	the



OK	button.	That,	too,	is	an	event	in	the	future:
Click	here	to	view	code	image

public	CompletableFuture<URI>	getURLInput(String	prompt)

Here	we	have	two	functions	T	->	CompletableFuture<U>	and	U	->
CompletableFuture<V>.	Clearly,	they	compose	to	a	function	T	->
CompletableFuture<V>	if	the	second	function	is	called	when	the	first	one
has	completed.	That	is	exactly	what	thenCompose	does.
In	the	preceding	section,	you	saw	the	whenComplete	method	for	handling
exceptions.	There	is	also	a	handle	method	that	requires	a	function	processing
the	result	or	exception	and	computing	a	new	result.	In	many	cases,	it	is	simpler
to	call	the	exceptionally	method	instead:
Click	here	to	view	code	image

CompletableFuture<String>	contents	=	readPage(url)

.exceptionally(t	->	{	Log	t;	return	emptyPage;	});

The	supplied	handler	is	only	called	if	an	exception	occurred,	and	it	produces	a
result	to	be	used	in	the	processing	pipeline.	If	no	exception	occurred,	the	original
result	is	used.
The	methods	in	Table	10-1	with	void	result	are	normally	used	at	the	end	of	a
processing	pipeline.

Table	10-1	Adding	an	Action	to	a	CompletableFuture<T>	Object

Method Parameter Description
thenApply T	->	U Apply	a	function	to	the	result.

thenAccept T	->	void
Like	thenApply,	but	with
void	result.

thenCompose
T	->

CompletableFuture<U>

Invoke	the	function	on	the
result	and	execute	the	returned
future.

handle (T,	Throwable)	->	U
Process	the	result	or	error	and
yield	a	new	result.

whenComplete
(T,	Throwable)	->

void

Like	handle,	but	with	void
result.

exceptionallyThrowable	->	T Turn	the	error	into	a	default
result.



thenRun Runnable
Execute	the	Runnable	with
void	result.

Now	let	us	turn	to	methods	that	combine	multiple	futures	(see	Table	10-2).

Table	10-2	Combining	Multiple	Composition	Objects

Method Parameters Description

thenCombine
CompletableFuture<U>,
(T,	U)	->	V

Execute	both	and	combine
the	results	with	the	given
function.

thenAcceptBoth
CompletableFuture<U>,
(T,	U)	->	void

Like	thenCombine,	but
with	void	result.

runAfterBoth
CompletableFuture<?>,
Runnable

Execute	the	runnable	after
both	complete.

applyToEither
CompletableFuture<T>,
T	->	V

When	a	result	is	available
from	one	or	the	other,	pass	it
to	the	given	function.

acceptEither
CompletableFuture<T>,
T	->	void

Like	applyToEither,
but	with	void	result.

runAfterEither
CompletableFuture<?>,
Runnable

Execute	the	runnable	after
one	or	the	other	completes.

static	allOf
CompletableFuture<?

>...

Complete	with	void	result
after	all	given	futures
complete.

static	anyOf
CompletableFuture<?

>...

Complete	after	any	of	the
given	futures	completes	and
yield	its	result.

The	first	three	methods	run	a	CompletableFuture<T>	and	a
CompletableFuture<U>	action	concurrently	and	combine	the	results.
The	next	three	methods	run	two	CompletableFuture<T>	actions
concurrently.	As	soon	as	one	of	them	finishes,	its	result	is	passed	on,	and	the
other	result	is	ignored.
Finally,	the	static	allOf	and	anyOf	methods	take	a	variable	number	of



completable	futures	and	yield	a	CompletableFuture<Void>	that
completes	when	all	of	them,	or	any	one	of	them,	completes.	The	allOf	method
does	not	yield	a	result.	The	anyOf	method	does	not	terminate	the	remaining
tasks.	Exercises	28	and	29	show	useful	improvements	of	these	two	methods.

	Note

Technically	speaking,	the	methods	in	this	section	accept	parameters	of
type	CompletionStage,	not	CompletableFuture.	The
CompletionStage	interface	describes	how	to	compose
asynchronous	computations,	whereas	the	Future	interface	focuses	on
the	result	of	a	computation.	A	CompletableFuture	is	both	a
CompletionStage	and	a	Future.

10.2.3	Long-Running	Tasks	in	User-Interface	Callbacks
One	of	the	reasons	to	use	threads	is	to	make	your	programs	more	responsive.
This	is	particularly	important	in	an	application	with	a	user	interface.	When	your
program	needs	to	do	something	time-consuming,	you	cannot	do	the	work	in	the
user-interface	thread,	or	the	user	interface	will	freeze.	Instead,	fire	up	another
worker	thread.
For	example,	if	you	want	to	read	a	web	page	when	the	user	clicks	a	button,	don't
do	this:
Click	here	to	view	code	image

Button	read	=	new	Button("Read");

read.setOnAction(event	->	{	//	Bad—long-running	action	is	executed	on	UI	thread
Scanner	in	=	new	Scanner(url.openStream());

while	(in.hasNextLine())	{

String	line	=	in.nextLine();

...

}

});

Instead,	do	the	work	in	a	separate	thread.
Click	here	to	view	code	image

read.setOnAction(event	->	{	//	Good—long-running	action	in	separate	thread
Runnable	task	=	()	->	{

Scanner	in	=	new	Scanner(url.openStream());

while	(in.hasNextLine())	{

String	line	=	in.nextLine();

...



}

}

executor.execute(task);

});

However,	you	cannot	directly	update	the	user	interface	from	the	thread	that
executes	the	long-running	task.	User	interfaces	such	as	JavaFX,	Swing,	or
Android	are	not	threadsafe.	You	cannot	manipulate	user-interface	elements	from
multiple	threads,	or	they	risk	becoming	corrupted.	In	fact,	JavaFX	and	Android
check	for	this,	and	throw	an	exception	if	you	try	to	access	the	user	interface	from
a	thread	other	than	the	UI	thread.
Therefore,	you	need	to	schedule	any	UI	updates	to	happen	on	the	UI	thread.
Each	user-interface	library	provides	some	mechanism	to	schedule	a	Runnable
for	execution	on	the	UI	thread.	For	example,	in	JavaFX,	you	can	use
Click	here	to	view	code	image

Platform.runLater(()	->

message.appendText(line	+	"\n"));

	Note

It	is	tedious	to	implement	lengthy	operations	while	giving	users
feedback	on	the	progress,	so	user-interface	libraries	usually	provide
some	kind	of	helper	class	for	managing	the	details,	such	as
SwingWorker	in	Swing	and	AsyncTask	in	Android.	You	specify
actions	for	the	long-running	task	(which	is	run	on	a	separate	thread),	as
well	as	progress	updates	and	the	final	disposition	(which	are	run	on	the
UI	thread).
The	Task	class	in	JavaFX	takes	a	slightly	different	approach	to
progress	updates.	The	class	provides	methods	to	update	task	properties
(a	message,	completion	percentage,	and	result	value)	in	the	long-running
thread.	You	bind	the	properties	to	user-interface	elements,	which	are
then	updated	in	the	UI	thread.

10.3	Thread	Safety
Many	programmers	initially	think	that	concurrent	programming	is	pretty	easy.
You	just	divide	your	work	into	tasks,	and	that's	it.	What	could	possibly	go
wrong?
In	the	following	sections,	I	show	you	what	can	go	wrong,	and	give	a	high-level



overview	of	what	you	can	do	about	it.

10.3.1	Visibility
Even	operations	as	simple	as	writing	and	reading	a	variable	can	be	incredibly
complicated	with	modern	processors.	Consider	this	example:
Click	here	to	view	code	image

private	static	boolean	done	=	false;

public	static	void	main(String[]	args)	{

Runnable	hellos	=	()	->	{

for	(int	i	=	1;	i	<=	1000;	i++)

System.out.println("Hello	"	+	i);

done	=	true;

};

Runnable	goodbye	=	()	->	{

int	i	=	1;

while	(!done)	i++;

System.out.println("Goodbye	"	+	i);

};

Executor	executor	=	Executors.newCachedThreadPool();

executor.execute(hellos);

executor.execute(goodbye);

}

The	first	task	prints	“Hello”	a	thousand	times,	and	then	sets	done	to	true.
The	second	task	waits	for	done	to	become	true,	and	then	prints	“Goodbye”
once,	incrementing	a	counter	while	it	is	waiting	for	that	happy	moment.
You'd	expect	the	output	to	be	something	like
Hello	1

...

Hello	1000

Goodbye	501249

When	I	run	this	program	on	my	laptop,	the	program	prints	up	to	“Hello
1000”	and	never	terminates.	The	effect	of
done	=	true;

may	not	be	visible	to	the	thread	running	the	second	task.
Why	wouldn't	it	be	visible?	Modern	compilers,	virtual	machines,	and	processors
perform	many	optimizations.	These	optimizations	assume	that	the	code	is
sequential	unless	explicitly	told	otherwise.
One	optimization	is	caching	of	memory	locations.	We	think	of	a	memory
location	such	as	done	as	bits	somewhere	in	the	transistors	of	a	RAM	chip.	But



RAM	chips	are	slow—many	times	slower	than	modern	processors.	Therefore,	a
processor	tries	to	hold	the	data	that	it	needs	in	registers	or	an	onboard	memory
cache,	and	eventually	writes	changes	back	to	memory.	This	caching	is	simply
indispensable	for	processor	performance.	There	are	operations	for	synchronizing
cached	copies,	but	they	have	a	significant	performance	cost	and	are	only	issued
when	requested.
Another	optimization	is	instruction	reordering.	The	compiler,	the	virtual
machine,	and	the	processor	are	allowed	to	change	the	order	of	instructions	to
speed	up	operations,	provided	it	does	not	change	the	sequential	semantics	of	the
program.
For	example,	consider	a	computation
Click	here	to	view	code	image

x	=	Something	not	involving	y;
y	=	Something	not	involving	x;
z	=	x	+	y;

The	first	two	steps	must	occur	before	the	third,	but	they	can	occur	in	either	order.
A	processor	can	(and	often	will)	run	the	first	two	steps	concurrently,	or	swap	the
order	if	the	inputs	to	the	second	step	are	more	quickly	available.
In	our	case,	the	loop
while	(!done)	i++;

can	be	reordered	as
if	(!done)	while	(true)	i++;

since	the	loop	body	does	not	change	the	value	of	done.
By	default,	optimizations	assume	that	there	are	no	concurrent	memory	accesses.
If	there	are,	the	virtual	machine	needs	to	know,	so	that	it	can	then	emit	processor
instructions	that	inhibit	improper	reorderings.
There	are	several	ways	of	ensuring	that	an	update	to	a	variable	is	visible.	Here	is
a	summary:
1.	The	value	of	a	final	variable	is	visible	after	initialization.
2.	The	initial	value	of	a	static	variable	is	visible	after	static	initialization.
3.	Changes	to	a	volatile	variable	are	visible.
4.	Changes	that	happen	before	releasing	a	lock	are	visible	to	anyone	acquiring
the	same	lock	(see	Section	10.7.1,	“Locks,”	page	357).

In	our	case,	the	problem	goes	away	if	you	declare	the	shared	variable	done	with



the	volatile	modifier:
Click	here	to	view	code	image

private	static	volatile	boolean	done;

Then	the	compiler	generates	instructions	that	cause	the	virtual	machine	to	issue
processor	commands	for	cache	synchronization.	As	a	result,	any	change	to	done
in	one	task	becomes	visible	to	the	other	tasks.
The	volatile	modifier	happens	to	suffice	to	solve	this	particular	problem.	But
as	you	will	see	in	the	next	section,	declaring	shared	variables	as	volatile	is
not	a	general	solution.

	Tip

It	is	an	excellent	idea	to	declare	any	field	that	does	not	change	after
initialization	as	final.	Then	you	never	have	to	worry	about	its
visibility.

10.3.2	Race	Conditions
Suppose	multiple	concurrent	tasks	update	a	shared	integer	counter.
Click	here	to	view	code	image

private	static	volatile	int	count	=	0;

...

count++;	//	Task	1
...

count++;	//	Task	2
...

The	variable	has	been	declared	as	volatile,	so	the	updates	are	visible.	But
that	is	not	enough.
The	update	count++	actually	means
register	=	count	+	1;
count	=	register;

When	these	computations	are	interleaved,	the	wrong	value	can	be	stored	back
into	the	count	variable.	In	the	parlance	of	concurrency,	we	say	that	the
increment	operation	is	not	atomic.	Consider	this	scenario:
Click	here	to	view	code	image

int	count	=	0;	//	Initial	value



register1	=	count	+	1;	//	Thread	1	computes	count	+	1
...	//	Thread	1	is	preempted
register2	=	count	+	1;	//	Thread	2	computes	count	+	1
count	=	register2;	//	Thread	2	stores	1	in	count
...	//	Thread	1	is	running	again
count	=	register1;	//	Thread	1	stores	1	in	count

Now	count	is	1,	not	2.	This	kind	of	error	is	called	a	race	condition	because	it
depends	on	which	thread	wins	the	“race”	for	updating	the	shared	variable.
Does	this	problem	really	happen?	It	certainly	does.	Run	the	demo	program	of	the
companion	code.	It	has	100	threads,	each	incrementing	the	counter	1,000	times
and	printing	the	result.
Click	here	to	view	code	image

for	(int	i	=	1;	i	<=	100;	i++)	{

int	taskId	=	i;

Runnable	task	=	()	->	{

for	(int	k	=	1;	k	<=	1000;	k++)

count++;

System.out.println(taskId	+	":	"	+	count);

};

executor.execute(task);

}

The	output	usually	starts	harmlessly	enough	as	something	like
1:	1000

3:	2000

2:	3000

6:	4000

After	a	while,	it	looks	a	bit	scary:
72:	58196

68:	59196

73:	61196

71:	60196

69:	62196

But	that	might	just	be	because	some	threads	were	paused	at	inopportune
moments.	What	matters	is	what	happens	with	the	task	that	finished	last.	Did	it
bring	up	the	counter	to	100,000?
I	ran	the	program	dozens	of	times	on	my	multi-core	laptop,	and	it	fails	every
time.	Years	ago,	when	personal	computers	had	a	single	CPU,	race	conditions
were	more	difficult	to	observe,	and	programmers	did	not	notice	such	dramatic
failures	often.	But	it	doesn't	matter	whether	a	wrong	value	is	computed	within



seconds	or	hours.
This	example	looks	at	the	simple	case	of	a	shared	counter	in	a	toy	program.
Exercise	17	shows	the	same	problem	in	a	realistic	example.	But	it's	not	just
counters.	Race	conditions	are	a	problem	whenever	shared	variables	are	mutated.
For	example,	when	adding	a	value	to	the	head	of	a	queue,	the	insertion	code
might	look	like	this:
Node	n	=	new	Node();

if	(head	==	null)	head	=	n;

else	tail.next	=	n;

tail	=	n;

tail.value	=	newValue;

Lots	of	things	can	go	wrong	if	this	sequence	of	instructions	is	paused	at	an
unfortunate	time	and	another	task	gets	control,	accessing	the	queue	while	it	is	in
an	inconsistent	state.
Work	through	Exercise	21	to	get	a	feel	for	how	a	data	structure	can	get	corrupted
by	concurrent	mutation.
We	need	to	ensure	that	the	entire	sequence	of	operation	is	carried	out	together.
Such	an	instruction	sequence	is	called	a	critical	section.	You	can	use	a	lock	to
protect	critical	sections	and	make	critical	sequences	of	operation	atomic.	You
will	learn	how	to	program	with	locks	in	Section	10.7.1,	“Locks”	(page	357).
While	it	is	straightforward	to	use	locks	for	protecting	critical	sections,	locks	are
not	a	general	solution	for	solving	all	concurrency	problems.	They	are	difficult	to
use	properly,	and	it	is	easy	to	make	mistakes	that	severely	degrade	performance
or	even	cause	“deadlock.”

10.3.3	Strategies	for	Safe	Concurrency
In	languages	such	as	C	and	C++,	programmers	need	to	manually	allocate	and
deallocate	memory.	That	sounds	dangerous—and	it	is.	Many	programmers	have
spent	countless	miserable	hours	chasing	memory	allocation	bugs.	In	Java,	there
is	a	garbage	collector,	and	few	Java	programmers	need	to	worry	about	memory
management.
Unfortunately,	there	is	no	equivalent	mechanism	for	shared	data	access	in	a
concurrent	program.	The	best	you	can	do	is	to	follow	a	set	of	guidelines	to
manage	the	inherent	dangers.
A	highly	effective	strategy	is	confinement.	Just	say	no	when	it	comes	to	sharing
data	among	tasks.	For	example,	when	your	tasks	need	to	count	something,	give
each	of	them	a	private	counter	instead	of	updating	a	shared	counter.	When	the



tasks	are	done,	they	can	hand	off	their	results	to	another	task	that	combines
them.
Another	good	strategy	is	immutability.	It	is	safe	to	share	immutable	objects.	For
example,	instead	of	adding	results	to	a	shared	collection,	a	task	can	generate	an
immutable	collection	of	results.	Another	task	combines	the	results	into	another
immutable	data	structure.	The	idea	is	simple,	but	there	are	a	few	things	to	watch
out	for—see	Section	10.3.4,	“Immutable	Classes”	(page	347).
The	third	strategy	is	locking.	By	granting	only	one	task	at	a	time	access	to	a	data
structure,	one	can	keep	it	from	being	damaged.	In	Section	10.5,	“Threadsafe
Data	Structures”	(page	350),	you	will	see	data	structures	provided	by	the	Java
concurrency	library	that	are	safe	to	use	concurrently.	Section	10.7.1,	“Locks”
(page	357)	shows	you	how	locking	works,	and	how	experts	build	these	data
structures.
Locking	is	error-prone,	and	it	can	be	expensive	since	it	reduces	opportunities	for
concurrent	execution.	For	example,	if	you	have	lots	of	tasks	contributing	results
to	a	shared	hash	table,	and	the	table	is	locked	for	each	update,	then	that	is	a	real
bottleneck.	If	most	tasks	have	to	wait	their	turn,	they	aren't	doing	useful	work.
Sometimes	it	is	possible	to	partition	data	so	that	different	pieces	can	be	accessed
concurrently.	Several	data	structures	in	the	Java	concurrency	library	use
partitioning,	as	do	the	parallel	algorithms	in	the	streams	library.	Don't	try	this	at
home!	It	is	really	hard	to	get	it	right.	Instead,	use	the	data	structures	and
algorithms	from	the	Java	library.

10.3.4	Immutable	Classes
A	class	is	immutable	when	its	instances,	once	constructed,	cannot	change.	It
sounds	at	first	as	if	you	can't	do	much	with	them,	but	that	isn't	true.	The
ubiquitous	String	class	is	immutable,	as	are	the	classes	in	the	date	and	time
library	(see	Chapter	12).	Each	date	instance	is	immutable,	but	you	can	obtain
new	dates,	such	as	the	one	that	comes	a	day	after	a	given	one.
Or	consider	a	set	for	collecting	results.	You	could	use	a	mutable	HashSet	and
update	it	like	this:
results.addAll(newResults);

But	that	is	clearly	dangerous.
An	immutable	set	always	creates	new	sets.	You	would	update	the	results
somewhat	like	this:
Click	here	to	view	code	image



results	=	results.union(newResults);

There	is	still	mutation,	but	it	is	much	easier	to	control	what	happens	to	one
variable	than	to	a	hash	set	with	many	methods.
It	is	not	difficult	to	implement	immutable	classes,	but	you	should	pay	attention
to	these	issues:
1.	Don't	change	the	object	state	after	construction.	Be	sure	to	declare	instance
variables	final.	There	is	no	reason	not	to,	and	you	gain	an	important
advantage:	the	virtual	machine	ensures	that	a	final	instance	variable	is
visible	after	construction	(Section	10.3.1,	“Visibility,”	page	342).

2.	Of	course,	none	of	the	methods	can	be	mutators.	You	should	make	them
final,	or	better,	declare	the	class	final,	so	that	mutators	cannot	be	added
in	subclasses.

3.	Don't	leak	state	that	can	be	mutated	externally.	None	of	your	(non-private)
methods	can	return	a	reference	to	any	innards	that	could	be	used	for	mutation,
such	as	an	internal	array	or	collection.	When	one	of	your	methods	calls	a
method	of	another	class,	it	must	not	pass	any	such	references	either,	since	the
called	method	might	otherwise	use	them	for	mutation.	Instead,	pass	a	copy.

4.	Conversely,	don't	store	any	reference	to	a	mutable	object	that	the	constructor
receives.	Instead,	make	a	copy.

5.	Don't	let	the	this	reference	escape	in	a	constructor.	When	you	call	another
method,	you	know	not	to	pass	any	internal	references,	but	what	about	this?
That's	perfectly	safe	after	construction,	but	if	you	reveal	this	in	the
constructor,	someone	could	observe	the	object	in	an	incomplete	state.	Also
beware	of	constructors	giving	out	inner	class	references	that	contain	a	hidden
this	reference.	Naturally,	these	situations	are	quite	rare.

10.4	Parallel	Algorithms
Before	starting	to	parallelize	your	computations,	you	should	check	if	the	Java
library	has	done	this	for	you.	The	stream	library	or	the	Arrays	class	may
already	do	what	you	need.

10.4.1	Parallel	Streams
The	stream	library	can	automatically	parallelize	operations	on	large	data	sets.
For	example,	if	coll	is	a	large	collection	of	strings,	and	you	want	to	find	how
many	of	them	start	with	the	letter	A,	call
Click	here	to	view	code	image



long	result	=	coll.parallelStream().filter(s	->

s.startsWith("A")).count();

The	parallelStream	method	yields	a	parallel	stream.	The	stream	is	broken
up	into	segments.	The	filtering	and	counting	is	done	on	each	segment,	and	the
results	are	combined.	You	don't	need	to	worry	about	the	details.

	Caution

When	you	use	parallel	streams	with	lambdas	(for	example,	as	the
argument	to	filter	and	map	in	the	preceding	examples),	be	sure	to
stay	away	from	unsafe	mutation	of	shared	objects.

For	parallel	streams	to	work	well,	a	number	of	conditions	need	to	be	fulfilled:
•	There	needs	to	be	enough	data.	There	is	a	substantial	overhead	for	parallel
streams	that	is	only	repaid	for	large	data	sets.
•	The	data	should	be	in	memory.	It	would	be	inefficient	to	have	to	wait	for	the
data	to	arrive.
•	The	stream	should	be	efficiently	splittable	into	subregions.	A	stream	backed
by	an	array	or	a	balanced	binary	tree	works	well,	but	a	linked	list	or	the	result
of	Stream.iterate	does	not.
•	The	stream	operations	should	do	a	substantial	amount	of	work.	If	the	total
work	load	is	not	large,	it	does	not	make	sense	to	pay	for	the	cost	of	setting	up
the	concurrent	computation.
•	The	stream	operations	should	not	block.

In	other	words,	don’t	turn	all	your	streams	into	parallel	streams.	Use	parallel
streams	only	when	you	do	a	substantial	amount	of	sustained	computational	work
on	data	that	is	already	in	memory.

10.4.2	Parallel	Array	Operations
The	Arrays	class	has	a	number	of	parallelized	operations.	Just	as	with	the
parallel	stream	operations	of	the	preceding	sections,	the	operations	break	the
array	into	sections,	work	on	them	concurrently,	and	combine	the	results.
The	static	Arrays.parallelSetAll	method	fills	an	array	with	values
computed	by	a	function.	The	function	receives	the	element	index	and	computes
the	value	at	that	location.
Click	here	to	view	code	image



Arrays.parallelSetAll(values,	i	->	i	%	10);

//	Fills	values	with	0	1	2	3	4	5	6	7	8	9	0	1	2	...

Clearly,	this	operation	benefits	from	being	parallelized.	There	are	versions	for	all
primitive	type	arrays	and	for	object	arrays.
The	parallelSort	method	can	sort	an	array	of	primitive	values	or	objects.
For	example,
Click	here	to	view	code	image

Arrays.parallelSort(words,	Comparator.comparing(String::length));

With	all	methods,	you	can	supply	the	bounds	of	a	range,	such	as
Click	here	to	view	code	image

Arrays.parallelSort(values,	values.length	/	2,	values.length);	//	Sort
the	upper	half

	Note

At	first	glance,	it	seems	a	bit	odd	that	these	methods	have	parallel	in
their	names—the	user	shouldn’t	care	how	the	setting	or	sorting	happens.
However,	the	API	designers	wanted	to	make	it	clear	that	the	operations
are	parallelized.	That	way,	users	are	on	notice	to	avoid	generator	or
comparison	functions	with	side	effects.

Finally,	there	is	a	parallelPrefix	that	is	rather	specialized—Exercise	4
gives	a	simple	example.
For	other	parallel	operations	on	arrays,	turn	the	arrays	into	parallel	streams.	For
example,	to	compute	the	sum	of	a	long	array	of	integers,	call
Click	here	to	view	code	image

long	sum	=	IntStream.of(values).parallel().sum();

10.5	Threadsafe	Data	Structures
If	multiple	threads	concurrently	modify	a	data	structure,	such	as	a	queue	or	hash
table,	it	is	easy	to	damage	the	internals	of	the	data	structure.	For	example,	one
thread	may	begin	to	insert	a	new	element.	Suppose	it	is	preempted	in	the	middle
of	rerouting	links,	and	another	thread	starts	traversing	the	same	location.	The
second	thread	may	follow	invalid	links	and	create	havoc,	perhaps	throwing
exceptions	or	even	getting	trapped	in	an	infinite	loop.



As	you	will	see	in	Section	10.7.1,	“Locks”	(page	357),	you	can	use	locks	to
ensure	that	only	one	thread	can	access	the	data	structure	at	a	given	point	in	time,
blocking	any	others.	But	you	can	do	better	than	that.	The	collections	in	the
java.util.concurrent	package	have	been	cleverly	implemented	so	that
multiple	threads	can	access	them	without	blocking	each	other,	provided	they
access	different	parts.

	Note

These	collections	yield	weakly	consistent	iterators.	That	means	that	the
iterators	present	elements	appearing	at	onset	of	iteration,	but	may	or
may	not	reflect	some	or	all	of	the	modifications	that	were	made	after
they	were	constructed.	However,	such	an	iterator	will	not	throw	a
ConcurrentModificationException.
In	contrast,	an	iterator	of	a	collection	in	the	java.util	package
throws	a	ConcurrentModificationException	when	the
collection	has	been	modified	after	construction	of	the	iterator.

10.5.1	Concurrent	Hash	Maps
A	ConcurrentHashMap	is,	first	of	all,	a	hash	map	whose	operations	are
threadsafe.	No	matter	how	many	threads	operate	on	the	map	at	the	same	time,
the	internals	are	not	corrupted.	Of	course,	some	threads	may	be	temporarily
blocked,	but	the	map	can	efficiently	support	a	large	number	of	concurrent
readers	and	a	certain	number	of	concurrent	writers.
But	that	is	not	enough.	Suppose	we	want	to	use	a	map	to	count	how	often	certain
features	are	observed.	As	an	example,	suppose	multiple	threads	encounter
words,	and	we	want	to	count	their	frequencies.	Obviously,	the	following	code	for
updating	a	count	is	not	threadsafe:
Click	here	to	view	code	image

ConcurrentHashMap<String,	Long>	map	=	new	ConcurrentHashMap<>();

...

Long	oldValue	=	map.get(word);

Long	newValue	=	oldValue	==	null	?	1	:	oldValue	+	1;

map.put(word,	newValue);	//	Error—might	not	replace	oldValue

Another	thread	might	be	updating	the	exact	same	count	at	the	same	time.
To	update	a	value	safely,	use	the	compute	method.	It	is	called	with	a	key	and	a
function	to	compute	the	new	value.	That	function	receives	the	key	and	the



associated	value,	or	null	if	there	is	none,	and	computes	the	new	value.	For
example,	here	is	how	we	can	update	a	count:
Click	here	to	view	code	image

map.compute(word,	(k,	v)	->	v	==	null	?	1	:	v	+	1);

The	compute	method	is	atomic—no	other	thread	can	mutate	the	map	entry
while	the	computation	is	in	progress.
There	are	also	variants	computeIfPresent	and	computeIfAbsent	that
only	compute	a	new	value	when	there	is	already	an	old	one,	or	when	there	isn’t
yet	one.
Another	atomic	operation	is	putIfAbsent.	A	counter	might	be	initialized	as
map.putIfAbsent(word,	0L);

You	often	need	to	do	something	special	when	a	key	is	added	for	the	first	time.
The	merge	method	makes	this	particularly	convenient.	It	has	a	parameter	for
the	initial	value	that	is	used	when	the	key	is	not	yet	present.	Otherwise,	the
function	that	you	supplied	is	called,	combining	the	existing	value	and	the	initial
value.	(Unlike	compute,	the	function	does	not	process	the	key.)
Click	here	to	view	code	image

map.merge(word,	1L,	(existingValue,	newValue)	->	existingValue	+

newValue);

or	simply,
Click	here	to	view	code	image

map.merge(word,	1L,	Long::sum);

Of	course,	the	functions	passed	to	compute	and	merge	should	complete
quickly,	and	they	should	not	attempt	to	mutate	the	map.

	Note

There	are	methods	that	atomically	remove	or	replace	an	entry	if	it	is
currently	equal	to	an	existing	one.	Before	the	compute	method	was
available,	people	would	write	code	like	this	for	incrementing	a	count:

Click	here	to	view	code	image

do	{

oldValue	=	map.get(word);

newValue	=	oldValue	+	1;

}	while	(!map.replace(word,	oldValue,	newValue));



	Note

There	are	several	bulk	operations	for	searching,	transforming,	or	visiting
a	ConcurrentHashMap.	They	operate	on	a	snapshot	of	the	data	and
can	safely	execute	even	while	other	threads	operate	on	the	map.	In	the
API	documentation,	look	for	the	operations	whose	names	start	with
search,	reduce,	and	forEach.	There	are	variants	that	operate	on
the	keys,	values,	and	entries.	The	reduce	methods	have	specializations
for	int-,	long-,	and	double-valued	reduction	functions.

10.5.2	Blocking	Queues
One	commonly	used	tool	for	coordinating	work	between	tasks	is	a	blocking
queue.	Producer	tasks	insert	items	into	the	queue,	and	consumer	tasks	retrieve
them.	The	queue	lets	you	safely	hand	over	data	from	one	task	to	another.
When	you	try	to	add	an	element	and	the	queue	is	currently	full,	or	you	try	to
remove	an	element	when	the	queue	is	empty,	the	operation	blocks.	In	this	way,
the	queue	balances	the	workload.	If	the	producer	tasks	run	slower	than	the
consumer	tasks,	the	consumers	block	while	waiting	for	the	results.	If	the
producers	run	faster,	the	queue	fills	up	until	the	consumers	catch	up.
Table	10-3	shows	the	methods	for	blocking	queues.	The	blocking	queue	methods
fall	into	three	categories	that	differ	by	the	action	they	perform	when	the	queue	is
full	or	empty.	In	addition	to	the	blocking	methods,	there	are	methods	that	throw
an	exception	when	they	don't	succeed,	and	methods	that	return	with	a	failure
indicator	instead	of	throwing	an	exception	if	they	cannot	carry	out	their	tasks.

Table	10-3	Blocking	Queue	Operations

Method Normal	Action Error	Action

put
Adds	an	element	to	the
tail Blocks	if	the	queue	is	full

take
Removes	and	returns	the
head	element Blocks	if	the	queue	is	empty

add
Adds	an	element	to	the
tail

Throws	an	IllegalStateException
if	the	queue	is	full

Removes	and	returns	the Throws	a	NoSuchElementException



remove head	element if	the	queue	is	empty

elementReturns	the	head	element Throws	a	NoSuchElementExceptionif	the	queue	is	empty

offer
Adds	an	element	and
returns	true Returns	false	if	the	queue	is	full

poll
Removes	and	returns	the
head	element Returns	null	if	the	queue	is	empty

peek Returns	the	head	element Returns	null	if	the	queue	is	empty

	Note

The	poll	and	peek	methods	return	null	to	indicate	failure.
Therefore,	it	is	illegal	to	insert	null	values	into	these	queues.

There	are	also	variants	of	the	offer	and	poll	methods	with	a	timeout.	For
example,	the	call
Click	here	to	view	code	image

boolean	success	=	q.offer(x,	100,	TimeUnit.MILLISECONDS);

tries	for	100	milliseconds	to	insert	an	element	to	the	tail	of	the	queue.	If	it
succeeds,	it	returns	true;	otherwise,	it	returns	false	when	it	times	out.
Similarly,	the	call
Click	here	to	view	code	image

Object	head	=	q.poll(100,	TimeUnit.MILLISECONDS)

tries	for	100	milliseconds	to	remove	the	head	of	the	queue.	If	it	succeeds,	it
returns	the	head;	otherwise,	it	returns	null	when	it	times	out.
The	java.util.concurrent	package	supplies	several	variations	of
blocking	queues.	A	LinkedBlockingQueue	is	based	on	a	linked	list,	and	an
ArrayBlockingQueue	uses	a	circular	array.
Exercise	11	shows	how	to	use	blocking	queues	for	analyzing	files	in	a	directory.
One	thread	walks	the	file	tree	and	inserts	files	into	a	queue.	Several	threads
remove	the	files	and	search	them.	In	this	application,	it	is	likely	that	the	producer
quickly	fills	up	the	queue	with	files	and	blocks	until	the	consumers	can	catch	up.



A	common	challenge	with	such	a	design	is	stopping	the	consumers.	A	consumer
cannot	simply	quit	when	the	queue	is	empty.	After	all,	the	producer	might	not
yet	have	started,	or	it	may	have	fallen	behind.	If	there	is	a	single	producer,	it	can
add	a	“last	item”	indicator	to	the	queue,	similar	to	a	dummy	suitcase	with	a	label
“last	bag”	in	a	baggage	claim	belt.

10.5.3	Other	Threadsafe	Data	Structures
Just	like	you	can	choose	between	hash	maps	and	tree	maps	in	the	java.util
package,	there	is	a	concurrent	map	that	is	based	on	comparing	keys,	called
ConcurrentSkipListMap.	Use	it	if	you	need	to	traverse	the	keys	in	sorted
order,	or	if	you	need	one	of	the	added	methods	in	the	NavigableMap	interface
(see	Chapter	7).	Similarly,	there	is	a	ConcurrentSkipListSet.
The	CopyOnWriteArrayList	and	CopyOnWriteArraySet	are
threadsafe	collections	in	which	all	mutators	make	a	copy	of	the	underlying	array.
This	arrangement	is	useful	if	the	threads	that	iterate	over	the	collection	greatly
outnumber	the	threads	that	mutate	it.	When	you	construct	an	iterator,	it	contains
a	reference	to	the	current	array.	If	the	array	is	later	mutated,	the	iterator	still	has
the	old	array,	but	the	collection’s	array	is	replaced.	As	a	consequence,	the	older
iterator	has	a	consistent	(but	potentially	outdated)	view	that	it	can	access	without
any	synchronization	expense.
Suppose	you	want	a	large,	threadsafe	set	instead	of	a	map.	There	is	no
ConcurrentHashSet	class,	and	you	know	better	than	trying	to	create	your
own.	Of	course,	you	can	use	a	ConcurrentHashMap	with	bogus	values,	but
that	gives	you	a	map,	not	a	set,	and	you	can't	apply	operations	of	the	Set
interface.
The	static	newKeySet	method	yields	a	Set<K>	that	is	actually	a	wrapper
around	a	ConcurrentHashMap<K,	Boolean>.	(All	map	values	are
Boolean.TRUE,	but	you	don't	actually	care	since	you	just	use	it	as	a	set.)
Click	here	to	view	code	image

Set<String>	words	=	ConcurrentHashMap.newKeySet();

If	you	have	an	existing	map,	the	keySet	method	yields	the	set	of	keys.	That	set
is	mutable.	If	you	remove	the	set's	elements,	the	keys	(and	their	values)	are
removed	from	the	map.	But	it	doesn't	make	sense	to	add	elements	to	the	key	set,
because	there	would	be	no	corresponding	values	to	add.	You	can	use	a	second
keySet	method,	with	a	default	value	used	when	adding	elements	to	the	set:
Click	here	to	view	code	image



Set<String>	words	=	map.keySet(1L);

words.add("Java");

If	"Java"	wasn't	already	present	in	words,	it	now	has	a	value	of	one.

10.6	Atomic	Counters	and	Accumulators
If	multiple	threads	update	a	shared	counter,	you	need	to	make	sure	that	this	is
done	in	a	threadsafe	way.	There	are	a	number	of	classes	in	the
java.util.concurrent.atomic	package	that	use	safe	and	efficient
machine-level	instructions	to	guarantee	atomicity	of	operations	on	integers,
long	and	boolean	values,	object	references,	and	arrays	thereof.	Using	these
classes	correctly	requires	considerable	expertise.	However,	atomic	counters	and
accumulators	are	convenient	for	application-level	programming.
For	example,	you	can	safely	generate	a	sequence	of	numbers	like	this:
Click	here	to	view	code	image

public	static	AtomicLong	nextNumber	=	new	AtomicLong();

//	In	some	thread...
long	id	=	nextNumber.incrementAndGet();

The	incrementAndGet	method	atomically	increments	the	AtomicLong
and	returns	the	post-increment	value.	That	is,	the	operations	of	getting	the	value,
adding	1,	setting	it,	and	producing	the	new	value	cannot	be	interrupted.	It	is
guaranteed	that	the	correct	value	is	computed	and	returned,	even	if	multiple
threads	access	the	same	instance	concurrently.
There	are	methods	for	atomically	setting,	adding,	and	subtracting	values,	but
suppose	you	want	to	make	a	more	complex	update.	One	way	is	to	use	the
updateAndGet	method.	For	example,	suppose	you	want	to	keep	track	of	the
largest	value	that	is	observed	by	different	threads.	The	following	won't	work:
Click	here	to	view	code	image

public	static	AtomicLong	largest	=	new	AtomicLong();

//	In	some	thread...
largest.set(Math.max(largest.get(),	observed));	//	Error—race	condition!

This	update	is	not	atomic.	Instead,	call	updateAndGet	with	a	lambda
expression	for	updating	the	variable.	In	our	example,	we	can	call
Click	here	to	view	code	image

largest.updateAndGet(x	->	Math.max(x,	observed));

or



Click	here	to	view	code	image

largest.accumulateAndGet(observed,	Math::max);

The	accumulateAndGet	method	takes	a	binary	operator	that	is	used	to
combine	the	atomic	value	and	the	supplied	argument.
There	are	also	methods	getAndUpdate	and	getAndAccumulate	that
return	the	old	value.

	Note

These	methods	are	also	provided	for	the	classes:
Click	here	to	view	code	image

AtomicInteger	AtomicLongFieldUpdater

AtomicIntegerArray	AtomicReference

AtomicIntegerFieldUpdater	AtomicReferenceArray

AtomicLongArray	AtomicReferenceFieldUpdater

When	you	have	a	very	large	number	of	threads	accessing	the	same	atomic
values,	performance	suffers	because	updates	are	carried	out	optimistically.	That
is,	the	operation	computes	a	new	value	from	a	given	old	value,	then	does	the
replacement	provided	the	old	value	is	still	the	current	one,	or	retries	if	it	is	not.
Under	heavy	contention,	updates	require	too	many	retries.
The	classes	LongAdder	and	LongAccumulator	solve	this	problem	for
certain	common	updates.	A	LongAdder	is	composed	of	multiple	variables
whose	collective	sum	is	the	current	value.	Multiple	threads	can	update	different
summands,	and	new	summands	are	automatically	provided	when	the	number	of
threads	increases.	This	is	efficient	in	the	common	situation	where	the	value	of
the	sum	is	not	needed	until	after	all	work	has	been	done.	The	performance
improvement	can	be	substantial—see	Exercise	9.
If	you	anticipate	high	contention,	you	should	simply	use	a	LongAdder	instead
of	an	AtomicLong.	The	method	names	are	slightly	different.	Call
increment	to	increment	a	counter	or	add	to	add	a	quantity,	and	sum	to
retrieve	the	total.
Click	here	to	view	code	image

final	LongAdder	count	=	new	LongAdder();

for	(...)

executor.execute(()	->	{

while	(...)	{



...

if	(...)	count.increment();

}

});

...

long	total	=	count.sum();

	Note

Of	course,	the	increment	method	does	not	return	the	old	value.
Doing	that	would	undo	the	efficiency	gain	of	splitting	the	sum	into
multiple	summands.

The	LongAccumulator	generalizes	this	idea	to	an	arbitrary	accumulation
operation.	In	the	constructor,	you	provide	the	operation	as	well	as	its	neutral
element.	To	incorporate	new	values,	call	accumulate.	Call	get	to	obtain	the
current	value.
Click	here	to	view	code	image

LongAccumulator	accumulator	=	new	LongAccumulator(Long::sum,	0);

//	In	some	tasks...
accumulator.accumulate(value);

//	When	all	work	is	done
long	sum	=	accumulator.get();

Internally,	the	accumulator	has	variables	a1,	a2,	…,	an.	Each	variable	is
initialized	with	the	neutral	element	(0	in	our	example).
When	accumulate	is	called	with	value	v,	then	one	of	them	is	atomically
updated	as	ai	=	ai	op	v,	where	op	is	the	accumulation	operation	written	in	infix
form.	In	our	example,	a	call	to	accumulate	computes	ai	=	ai	+	v	for	some	i.
The	result	of	get	is	a1	op	a2	op	…	op	an.	In	our	example,	that	is	the	sum	of	the
accumulators,	a1	+	a2	+	…	+	an.
If	you	choose	a	different	operation,	you	can	compute	maximum	or	minimum
(see	Exercise	10).	In	general,	the	operation	must	be	associative	and
commutative.	That	means	that	the	final	result	must	be	independent	of	the	order
in	which	the	intermediate	values	were	combined.
There	are	also	DoubleAdder	and	DoubleAccumulator	that	work	in	the
same	way,	except	with	double	values.



	Tip

If	you	use	a	hash	map	of	LongAdder,	you	can	use	the	following	idiom
to	increment	the	adder	for	a	key:

Click	here	to	view	code	image

ConcurrentHashMap<String,LongAdder>	counts	=	...;

counts.computeIfAbsent(key,	k	->	new	LongAdder()).increment();

When	the	count	for	key	is	incremented	the	first	time,	a	new	adder	is	set.

10.7	Locks	and	Conditions
Now	you	have	seen	several	tools	that	application	programmers	can	safely	use	for
structuring	concurrent	applications.	You	may	be	curious	how	one	would	build	a
threadsafe	counter	or	blocking	queue.	The	following	sections	show	you	how	it	is
done,	so	that	you	gain	some	understanding	of	the	costs	and	complexities.

10.7.1	Locks
To	avoid	the	corruption	of	shared	variables,	one	needs	to	ensure	that	only	one
thread	at	a	time	can	compute	and	set	the	new	values.	Code	that	must	be	executed
in	its	entirety,	without	interruption,	is	called	a	critical	section.	One	can	use	a	lock
to	implement	a	critical	section:
Click	here	to	view	code	image

Lock	countLock	=	new	ReentrantLock();	//	Shared	among	multiple	threads
int	count;	//	Shared	among	multiple	threads
...

countLock.lock();

try	{

count++;	//	Critical	section
}	finally	{

countLock.unlock();	//	Make	sure	the	lock	is	unlocked
}

	Note

In	this	section,	I	use	the	ReentrantLock	class	to	explain	how
locking	works.	As	you	will	see	in	the	next	section,	there	is	no
requirement	to	use	explicit	locks	since	there	are	“implicit”	locks	that	are
used	by	the	synchronized	keyword.	But	it	is	easier	to	understand
what	goes	on	under	the	hood	by	looking	at	explicit	locks.



The	first	thread	to	execute	the	lock	method	locks	the	countLock	object	and
then	proceeds	into	the	critical	section.	If	another	thread	tries	to	call	lock	on	the
same	object,	it	is	blocked	until	the	first	thread	executes	the	call	to	unlock.	In
this	way,	it	is	guaranteed	that	only	one	thread	at	a	time	can	execute	the	critical
section.
Note	that,	by	placing	the	unlock	method	into	a	finally	clause,	the	lock	is
released	if	any	exception	happens	in	the	critical	section.	Otherwise,	the	lock
would	be	permanently	locked,	and	no	other	thread	would	be	able	to	proceed	past
it.	This	would	clearly	be	very	bad.	Of	course,	in	this	case,	the	critical	section
can't	throw	an	exception	since	it	only	executes	an	integer	increment.	But	it	is	a
common	idiom	to	use	the	try/finally	statement	anyway,	in	case	more	code
gets	added	later.
At	first	glance,	it	seems	simple	enough	to	use	locks	for	protecting	critical
sections.	However,	the	devil	is	in	the	details.	Experience	has	shown	that	many
programmers	have	difficulty	writing	correct	code	with	locks.	They	might	use	the
wrong	locks,	or	create	situations	that	deadlock	when	no	thread	can	make
progress	because	all	of	them	wait	for	a	lock.
For	that	reason,	application	programmers	should	use	locks	as	a	matter	of	last
resort.	First	try	to	avoid	sharing,	by	using	immutable	data	or	handing	off	mutable
data	from	one	thread	to	another.	If	you	must	share,	use	prebuilt	threadsafe
structures	such	as	a	ConcurrentHashMap	or	a	LongAdder.	Still,	it	is	useful
to	know	about	locks	so	you	can	understand	how	such	data	structures	can	be
implemented.

10.7.2	The	synchronized	Keyword
In	the	preceding	section,	I	showed	you	how	to	use	a	ReentrantLock	to
implement	a	critical	section.	You	don't	have	to	use	an	explicit	lock	because	in
Java,	every	object	has	an	intrinsic	lock.	To	understand	intrinsic	locks,	however,	it
helps	to	have	seen	explicit	locks	first.
The	synchronized	keyword	is	used	to	lock	the	intrinsic	lock.	It	can	occur	in
two	forms.	You	can	lock	a	block:
synchronized	(obj)	{

Critical	section
}

This	essentially	means
Click	here	to	view	code	image



obj.intrinsicLock.lock();
try	{

Critical	section
}	finally	{

obj.intrinsicLock.unlock();
}

An	object	does	not	actually	have	a	field	that	is	an	intrinsic	lock.	The	code	is	just
meant	to	illustrate	what	goes	on	when	you	use	the	synchronized	keyword.
You	can	also	declare	a	method	as	synchronized.	Then	its	body	is	locked	on
the	receiver	parameter	this.	That	is,
Click	here	to	view	code	image

public	synchronized	void	method()	{

Body
}

is	the	equivalent	of
Click	here	to	view	code	image

public	void	method()	{

this.intrinsicLock.lock();
try	{

Body
}	finally	{

this.intrinsicLock.unlock();
}

}

For	example,	a	counter	can	simply	be	declared	as
Click	here	to	view	code	image

public	class	Counter	{

private	int	value;

public	synchronized	int	increment()	{

value++;

return	value;

}

}

By	using	the	intrinsic	lock	of	the	Counter	instance,	there	is	no	need	to	come
up	with	an	explicit	lock.
As	you	can	see,	using	the	synchronized	keyword	yields	code	that	is	quite
concise.	Of	course,	to	understand	this	code,	you	have	to	know	that	each	object
has	an	intrinsic	lock.



	Note

There	is	more	to	locks	than	atomicity.	Locks	also	guarantee	visibility.
For	example,	consider	the	done	variable	that	gave	us	so	much	grief	in
Section	10.3.1,	“Visibility”	(page	342).	If	you	use	a	lock	for	both	writing
and	reading	the	variable,	then	you	are	assured	that	the	caller	of	get	sees
any	update	to	the	variable	through	a	call	by	set.

Click	here	to	view	code	image

public	class	Flag	{

private	boolean	done;

public	synchronized	void	set()	{	done	=	true;	}

public	synchronized	boolean	get()	{	return	done;	}

}

Synchronized	methods	were	inspired	by	the	monitor	concept	that	was	pioneered
by	Per	Brinch	Hansen	and	Tony	Hoare	in	the	1970s.	A	monitor	is	essentially	a
class	in	which	all	instance	variables	are	private	and	all	methods	are	protected	by
a	private	lock.
In	Java,	it	is	possible	to	have	public	instance	variables	and	to	mix	synchronized
and	unsynchronized	methods.	More	problematically,	the	intrinsic	lock	is	publicly
accessible.
Many	programmers	find	this	confusing.	For	example,	Java	1.0	has	a
Hashtable	class	with	synchronized	methods	for	mutating	the	table.	To	safely
iterate	over	such	a	table,	you	can	acquire	the	lock	like	this:
Click	here	to	view	code	image

synchronized	(table)	{

for	(K	key	:	table.keySet())	...

}

Here,	table	denotes	both	the	hash	table	and	the	lock	that	its	methods	use.	This
is	a	common	source	of	misunderstandings—see	Exercise	22.

10.7.3	Waiting	on	Conditions
Consider	a	simple	Queue	class	with	methods	for	adding	and	removing	objects.
Synchronizing	the	methods	ensures	that	these	operations	are	atomic.
Click	here	to	view	code	image

public	class	Queue	{

class	Node	{	Object	value;	Node	next;	};



private	Node	head;

private	Node	tail;

public	synchronized	void	add(Object	newValue)	{

Node	n	=	new	Node();

if	(head	==	null)	head	=	n;

else	tail.next	=	n;

tail	=	n;

tail.value	=	newValue;

}

public	synchronized	Object	remove()	{

if	(head	==	null)	return	null;

Node	n	=	head;

head	=	n.next;

return	n.value;

}

}

Now	suppose	we	want	to	turn	the	remove	method	into	a	method	take	that
blocks	if	the	queue	is	empty.
The	check	for	emptiness	must	come	inside	the	synchronized	method	because
otherwise	the	inquiry	would	be	meaningless—another	thread	might	have
emptied	the	queue	in	the	meantime.
Click	here	to	view	code	image

public	synchronized	Object	take()	{

if	(head	==	null)	...	//	Now	what?
Node	n	=	head;

head	=	n.next;

return	n.value;

}

But	what	should	happen	if	the	queue	is	empty?	No	other	thread	can	add	elements
while	the	current	thread	holds	the	lock.	This	is	where	the	wait	method	comes
in.
If	the	take	method	finds	that	it	cannot	proceed,	it	calls	the	wait	method:
Click	here	to	view	code	image

public	synchronized	Object	take()	throws	InterruptedException	{

while	(head	==	null)	wait();

...

}

The	current	thread	is	now	deactivated	and	gives	up	the	lock.	This	lets	in	another
thread	that	can,	we	hope,	add	elements	to	the	queue.	This	is	called	waiting	on	a
condition.



Note	that	the	wait	method	is	a	method	of	the	Object	class.	It	relates	to	the
lock	that	is	associated	with	the	object.
There	is	an	essential	difference	between	a	thread	that	is	blocking	to	acquire	a
lock	and	a	thread	that	has	called	wait.	Once	a	thread	calls	the	wait	method,	it
enters	a	wait	set	for	the	object.	The	thread	is	not	made	runnable	when	the	lock	is
available.	Instead,	it	stays	deactivated	until	another	thread	has	called	the
notifyAll	method	on	the	same	object.
When	another	thread	has	added	an	element,	it	should	call	that	method:
Click	here	to	view	code	image

public	synchronized	void	add(Object	newValue)	{

...

notifyAll();

}

The	call	to	notifyAll	reactivates	all	threads	in	the	wait	set.	When	the	threads
are	removed	from	the	wait	set,	they	are	again	runnable	and	the	scheduler	will
eventually	activate	them	again.	At	that	time,	they	will	attempt	to	reacquire	the
lock.	As	one	of	them	succeeds,	it	continues	where	it	left	off,	returning	from	the
call	to	wait.
At	this	time,	the	thread	should	test	the	condition	again.	There	is	no	guarantee
that	the	condition	is	now	fulfilled—the	notifyAll	method	merely	signals	to
the	waiting	threads	that	it	may	be	fulfilled	at	this	time	and	that	it	is	worth
checking	for	the	condition	again.	For	that	reason,	the	test	is	in	a	loop
while	(head	==	null)	wait();

A	thread	can	only	call	wait,	notifyAll,	or	notify	on	an	object	if	it	holds
the	lock	on	that	object.

	Caution

Another	method,	notify,	unblocks	only	a	single	thread	from	the	wait
set.	That	is	more	efficient	than	unblocking	all	threads,	but	there	is	a
danger.	If	the	chosen	thread	finds	that	it	still	cannot	proceed,	it	becomes
blocked	again.	If	no	other	thread	calls	notify	again,	the	program
deadlocks.

	Note



When	implementing	data	structures	with	blocking	methods,	the	wait,
notify,	and	notifyAll	methods	are	appropriate.	But	they	are	not
easy	to	use	properly.	Application	programmers	should	never	have	a	need
to	use	these	methods.	Instead,	use	prebuilt	data	structures	such	as
LinkedBlockingQueue	or	ConcurrentHashMap.

10.8	Threads
As	we	are	nearing	the	end	of	this	chapter,	the	time	has	finally	come	to	talk	about
threads,	the	primitives	that	actually	execute	tasks.	Normally,	you	are	better	off
using	executors	that	manage	threads	for	you,	but	the	following	sections	give	you
some	background	information	about	working	directly	with	threads.

10.8.1	Starting	a	Thread
Here	is	how	to	run	a	thread	in	Java:
Click	here	to	view	code	image

Runnable	task	=	()	->	{	...	};

Thread	thread	=	new	Thread(task);

thread.start();

The	static	sleep	method	makes	the	current	thread	sleep	for	a	given	period,	so
that	some	other	threads	have	a	chance	to	do	work.
Runnable	task	=	()	->	{

...

Thread.sleep(millis);

...

}

If	you	want	to	wait	for	a	thread	to	finish,	call	the	join	method:
thread.join(millis);

These	two	methods	throw	the	checked	InterruptedException	that	is
discussed	in	the	next	section.
A	thread	ends	when	its	run	method	returns,	either	normally	or	because	an
exception	was	thrown.	In	the	latter	case,	the	uncaught	exception	handler	of	the
thread	is	invoked.	When	the	thread	is	created,	that	handler	is	set	to	the	uncaught
exception	handler	of	the	thread	group,	which	is	ultimately	the	global	handler
(see	Chapter	5).	You	can	change	the	handler	of	a	thread	by	calling	the
setUncaughtExceptionHandler	method.



	Note

The	initial	release	of	Java	defined	a	stop	method	that	immediately
terminates	a	thread,	and	a	suspend	method	that	blocks	a	thread	until
another	thread	calls	resume.	Both	methods	have	since	been	deprecated.
The	stop	method	is	inherently	unsafe.	Suppose	a	thread	is	stopped	in
the	middle	of	a	critical	section—for	example,	inserting	an	element	into	a
queue.	Then	the	queue	is	left	in	a	partially	updated	state.	However,	the
lock	protecting	the	critical	section	is	unlocked,	and	other	threads	can	use
the	corrupted	data	structure.	You	should	interrupt	a	thread	when	you
want	it	to	stop.	The	interrupted	thread	can	then	stop	when	it	is	safe	to	do
so.
The	suspend	method	is	not	as	risky	but	still	problematic.	If	a	thread	is
suspended	while	it	holds	a	lock,	any	other	thread	trying	to	acquire	that
lock	blocks.	If	the	resuming	thread	is	among	them,	the	program
deadlocks.

10.8.2	Thread	Interruption
Suppose	that,	for	a	given	query,	you	are	always	satisfied	with	the	first	result.
When	the	search	for	an	answer	is	distributed	over	multiple	tasks,	you	want	to
cancel	all	others	as	soon	as	the	answer	is	obtained.	In	Java,	task	cancellation	is
cooperative.
Each	thread	has	an	interrupted	status	that	indicates	that	someone	would	like	to
“interrupt”	the	thread.	There	is	no	precise	definition	of	what	interruption	means,
but	most	programmers	use	it	to	indicate	a	cancellation	request.
A	Runnable	can	check	for	this	status,	which	is	typically	done	in	a	loop:
Click	here	to	view	code	image

Runnable	task	=	()	->	{

while	(more	work	to	do)	{
if	(Thread.currentThread().isInterrupted())	return;

Do	more	work
}

};

When	the	thread	is	interrupted,	the	run	method	simply	ends.

	Note



There	is	also	a	static	Thread.interrupted	method	which	gets	the
interrupted	status	of	the	current	thread,	then	clears	it,	and	returns	the	old
status.

Sometimes,	a	thread	becomes	temporarily	inactive.	That	can	happen	if	a	thread
waits	for	a	value	to	be	computed	by	another	thread	or	for	input/output,	or	if	it
goes	to	sleep	to	give	other	threads	a	chance.
If	the	thread	is	interrupted	while	it	waits	or	sleeps,	it	is	immediately	reactivated
—but	in	this	case,	the	interrupted	status	is	not	set.	Instead,	an
InterruptedException	is	thrown.	This	is	a	checked	exception,	and	you
must	catch	it	inside	the	run	method	of	a	Runnable.	The	usual	reaction	to	the
exception	is	to	end	the	run	method:
Click	here	to	view	code	image

Runnable	task	=	()	->	{

try	{

while	(more	work	to	do)	{
Do	more	work
Thread.sleep(millis);

}

}

catch	(InterruptedException	ex)	{

//	Do	nothing
}

};

When	you	catch	the	InterruptedException	in	this	way,	there	is	no	need
to	check	for	the	interrupted	status.	If	the	thread	was	interrupted	outside	the	call
to	Thread.sleep,	the	status	is	set	and	the	Thread.sleep	method	throws
an	InterruptedException	as	soon	as	it	is	called.

	Tip

The	InterruptedException	may	seem	pesky,	but	you	should	not
just	catch	and	hide	it	when	you	call	a	method	such	as	sleep.	If	you
can't	do	anything	else,	at	least	set	the	interrupted	status:

Click	here	to	view	code	image

try	{

Thread.sleep(millis);

}	catch	(InterruptedException	ex)	{

Thread.currentThread().interrupt();

}



Or	better,	simply	propagate	the	exception	to	a	competent	handler:
Click	here	to	view	code	image

public	void	mySubTask()	throws	InterruptedException	{

...

Thread.sleep(millis);

...

}

10.8.3	Thread-Local	Variables
Sometimes,	you	can	avoid	sharing	by	giving	each	thread	its	own	instance,	using
the	ThreadLocal	helper	class.	For	example,	the	NumberFormat	class	is	not
threadsafe.	Suppose	we	have	a	static	variable
Click	here	to	view	code	image

public	static	final	NumberFormat	currencyFormat	=

NumberFormat.getCurrencyInstance();

If	two	threads	execute	an	operation	such	as
Click	here	to	view	code	image

String	amountDue	=	currencyFormat.format(total);

then	the	result	can	be	garbage	since	the	internal	data	structures	used	by	the
NumberFormat	instance	can	be	corrupted	by	concurrent	access.	You	could	use
a	lock	or	provide	a	synchronized	method	to	ensure	atomic	access	to	the	shared
NumberFormat	variable.	Alternatively,	you	could	construct	a	local
NumberFormat	object	whenever	you	need	it,	but	that	is	also	wasteful.
To	construct	one	instance	per	thread,	use	the	following	code:
Click	here	to	view	code	image

public	static	final	ThreadLocal<NumberFormat>	currencyFormat

=	ThreadLocal.withInitial(()	->	NumberFormat.getCurrencyInstance());

To	access	the	actual	formatter,	call
Click	here	to	view	code	image

String	amountDue	=	currencyFormat.get().format(total);

The	first	time	you	call	get	in	a	given	thread,	the	lambda	expression	in	the
constructor	is	called	to	create	the	instance	for	the	thread.	From	then	on,	the	get
method	returns	the	instance	belonging	to	the	current	thread.



10.8.4	Miscellaneous	Thread	Properties
The	Thread	class	exposes	a	number	of	properties	for	threads,	but	most	of	them
are	more	useful	for	students	of	certification	exams	than	application
programmers.	This	section	briefly	reviews	them.
Threads	can	be	collected	in	groups,	and	there	are	API	methods	to	manage	thread
groups,	such	as	interrupting	all	threads	in	a	group.	Nowadays,	executors	are	the
preferred	mechanism	for	managing	groups	of	tasks.
You	can	set	priorities	for	threads,	where	high-priority	threads	are	scheduled	to
run	before	lower-priority	ones.	Hopefully,	priorities	are	honored	by	the	virtual
machine	and	the	host	platform,	but	the	details	are	highly	platform-dependent.
Therefore,	using	priorities	is	fragile	and	not	generally	recommended.
Threads	have	states,	and	you	can	tell	whether	a	thread	is	new,	running,	blocked
on	input/output,	waiting,	or	terminated.	When	you	use	threads	as	an	application
programmer,	you	rarely	have	a	reason	to	inquire	about	their	states.
Threads	have	names,	and	you	can	change	the	name	for	debugging	purposes.	For
example:
Click	here	to	view	code	image

Thread.currentThread().setName("Bitcoin-miner-1");

When	a	thread	terminates	due	to	an	uncaught	exception,	the	exception	is	passed
to	the	thread's	uncaught	exception	handler.	By	default,	its	stack	trace	is	dumped
to	System.err,	but	you	can	install	your	own	handler	(see	Chapter	5).
A	daemon	is	a	thread	that	has	no	other	role	in	life	than	to	serve	others.	This	is
useful	for	threads	that	send	timer	ticks	or	clean	up	stale	cache	entries.	When	only
daemon	threads	remain,	the	virtual	machine	exits.
To	make	a	daemon	thread,	call	thread.setDaemon(true)	before	starting
the	thread.

10.9	Processes
Up	to	now,	you	have	seen	how	to	execute	Java	code	in	separate	threads	within
the	same	program.	Sometimes,	you	need	to	execute	another	program.	For	this,
use	the	ProcessBuilder	and	Process	classes.	The	Process	class
executes	a	command	in	a	separate	operating	system	process	and	lets	you	interact
with	its	standard	input,	output,	and	error	streams.	The	ProcessBuilder	class
lets	you	configure	a	Process	object.



	Note

The	ProcessBuilder	class	is	a	more	flexible	replacement	for	the
Runtime.exec	calls.

10.9.1	Building	a	Process
Start	the	building	process	by	specifying	the	command	that	you	want	to	execute.
You	can	supply	a	List<String>	or	simply	the	strings	that	make	up	the
command.
Click	here	to	view	code	image

ProcessBuilder	builder	=	new	ProcessBuilder("gcc",	"myapp.c");

	Caution

The	first	string	must	be	an	executable	command,	not	a	shell	builtin.	For
example,	to	run	the	dir	command	in	Windows,	you	need	to	build	a
process	with	strings	"cmd.exe",	"/C",	and	"dir".

Each	process	has	a	working	directory,	which	is	used	to	resolve	relative	directory
names.	By	default,	a	process	has	the	same	working	directory	as	the	virtual
machine,	which	is	typically	the	directory	from	which	you	launched	the	java
program.	You	can	change	it	with	the	directory	method:
Click	here	to	view	code	image

builder	=	builder.directory(path.toFile());

	Note

Each	of	the	methods	for	configuring	a	ProcessBuilder	returns
itself,	so	that	you	can	chain	commands.	Ultimately,	you	will	call

Click	here	to	view	code	image

Process	p	=	new	ProcessBuilder(command).directory(file).start();

Next,	you	will	want	to	specify	what	should	happen	to	the	standard	input,	output,
and	error	streams	of	the	process.	By	default,	each	of	them	is	a	pipe	that	you	can
access	with



Click	here	to	view	code	image

OutputStream	processIn	=	p.getOutputStream();

InputStream	processOut	=	p.getInputStream();

InputStream	processErr	=	p.getErrorStream();

Note	that	the	input	stream	of	the	process	is	an	output	stream	in	the	JVM!	You
write	to	that	stream,	and	whatever	you	write	becomes	the	input	of	the	process.
Conversely,	you	read	what	the	process	writes	to	the	output	and	error	streams.	For
you,	they	are	input	streams.
You	can	specify	that	the	input,	output,	and	error	streams	of	the	new	process
should	be	the	same	as	the	JVM.	If	the	user	runs	the	JVM	in	a	console,	any	user
input	is	forwarded	to	the	process,	and	the	process	output	shows	up	in	the
console.	Call
builder.inheritIO()

to	make	this	setting	for	all	three	streams.	If	you	only	want	to	inherit	some	of	the
streams,	pass	the	value
Click	here	to	view	code	image

ProcessBuilder.Redirect.INHERIT

to	the	redirectInput,	redirectOutput,	or	redirectError	methods.
For	example,
Click	here	to	view	code	image

builder.redirectOutput(ProcessBuilder.Redirect.INHERIT);

You	can	redirect	the	process	streams	to	files	by	supplying	File	objects:
Click	here	to	view	code	image

builder.redirectInput(inputFile)

.redirectOutput(outputFile)

.redirectError(errorFile)

The	files	for	output	and	error	are	created	or	truncated	when	the	process	starts.	To
append	to	existing	files,	use
Click	here	to	view	code	image

builder.redirectOutput(ProcessBuilder.Redirect.appendTo(outputFile));

It	is	often	useful	to	merge	the	output	and	error	streams,	so	you	see	the	outputs
and	error	messages	in	the	sequence	in	which	the	process	generates	them.	Call
Click	here	to	view	code	image



builder.redirectErrorStream(true)

to	activate	the	merging.	If	you	do	that,	you	can	no	longer	call
redirectError	on	the	ProcessBuilder	or	getErrorStream	on	the
Process.
Finally,	you	may	want	to	modify	the	environment	variables	of	the	process.	Here,
the	builder	chain	syntax	breaks	down.	You	need	to	get	the	builder's	environment
(which	is	initialized	by	the	environment	variables	of	the	process	running	the
JVM),	then	put	or	remove	entries.
Click	here	to	view	code	image

Map<String,	String>	env	=	builder.environment();

env.put("LANG",	"fr_FR");

env.remove("JAVA_HOME");

Process	p	=	builder.start();

10.9.2	Running	a	Process
After	you	have	configured	the	builder,	invoke	its	start	method	to	start	the
process.	If	you	configured	the	input,	output,	and	error	streams	as	pipes,	you	can
now	write	to	the	input	stream	and	read	the	output	and	error	streams.	For
example,
Click	here	to	view	code	image

Process	process	=	new	ProcessBuilder("/bin/ls",	"-l")

.directory(Paths.get("/tmp").toFile())

.start();

try	(Scanner	in	=	new	Scanner(process.getInputStream()))	{

while	(in.hasNextLine())

System.out.println(in.nextLine());

}

	Caution

There	is	limited	buffer	space	for	the	process	streams.	You	should	not
flood	the	input,	and	you	should	read	the	output	promptly.	If	there	is	a	lot
of	input	and	output,	you	may	need	to	produce	and	consume	it	in	separate
threads.

To	wait	for	the	process	to	finish,	call
Click	here	to	view	code	image

int	result	=	process.waitFor();



or,	if	you	don't	want	to	wait	indefinitely,
Click	here	to	view	code	image

long	delay	=	...;

if	(process.waitfor(delay,	TimeUnit.SECONDS))	{

int	result	=	process.exitValue();

...

}	else	{

process.destroyForcibly();

}

The	first	call	to	waitFor	returns	the	exit	value	of	the	process	(by	convention,	0
for	success	or	a	nonzero	error	code).	The	second	call	returns	true	if	the	process
didn't	time	out.	Then	you	need	to	retrieve	the	exit	value	by	calling	the
exitValue	method.
Instead	of	waiting	for	the	process	to	finish,	you	can	just	leave	it	running	and
occasionally	call	isAlive	to	see	whether	it	is	still	alive.	To	kill	the	process,
call	destroy	or	destroyForcibly.	The	difference	between	these	calls	is
platform-dependent.	On	Unix,	the	former	terminates	the	process	with	SIGTERM,
the	latter	with	SIGKILL.	(The	supportsNormalTermination	method
returns	true	if	the	destroy	method	can	terminate	the	process	normally.)
Finally,	you	can	receive	an	asynchronous	notification	when	the	process	has
completed.	The	call	process.onExit()	yields	a
CompletableFuture<Process>	that	you	can	use	to	schedule	any	action.
Click	here	to	view	code	image

process.onExit().thenAccept(

p	->	System.out.println("Exit	value:	"	+	p.exitValue()));

10.9.3	Process	Handles
To	get	more	information	about	a	process	that	your	program	started,	or	any	other
process	that	is	currently	running	on	your	machine,	use	the	ProcessHandle
interface.	You	can	obtain	a	ProcessHandle	in	four	ways:
1.	Given	a	Process	object	p,	p.toHandle()	yields	its	ProcessHandle.
2.	Given	a	long	operating	system	process	ID,	ProcessHandle.of(id)
yields	the	handle	of	that	process.

3.	ProcessHandle.current()	is	the	handle	of	the	process	that	runs	this
Java	virtual	machine.

4.	ProcessHandle.allProcesses()	yields	a
Stream<ProcessHandle>	of	all	operating	system	processes	that	are



visible	to	the	current	process.
Given	a	process	handle,	you	can	get	its	process	ID,	its	parent	process,	its
children,	and	its	descendants:
Click	here	to	view	code	image

long	pid	=	handle.pid();

Optional<ProcessHandle>	parent	=	handle.parent();

Stream<ProcessHandle>	children	=	handle.children();

Stream<ProcessHandle>	descendants	=	handle.descendants();

	Note

The	Stream<ProcessHandle>	instances	that	are	returned	by	the
allProcesses,	children,	and	descendants	methods	are	just
snapshots	in	time.	Any	of	the	processes	in	the	stream	may	be	terminated
by	the	time	you	get	around	to	seeing	them,	and	other	processes	may
have	started	that	are	not	in	the	stream.

The	info	method	yields	a	ProcessHandle.Info	object	with	methods	for
obtaining	information	about	the	process.
Click	here	to	view	code	image

Optional<String[]>	arguments()

Optional<String>	command()

Optional<String>	commandLine()

Optional<String>	startInstant()

Optional<String>	totalCpuDuration()

Optional<String>	user()

All	of	these	methods	return	Optional	values	since	it	is	possible	that	a
particular	operating	system	may	not	be	able	to	report	the	information.
For	monitoring	or	forcing	process	termination,	the	ProcessHandle	interface
has	the	same	isAlive,	supportsNormalTermination,	destroy,
destroyForcibly,	and	onExit	methods	as	the	Process	class.	However,
there	is	no	equivalent	to	the	waitFor	method.

Exercises
1.	Using	parallel	streams,	find	all	files	in	a	directory	that	contain	a	given	word.
How	do	you	find	just	the	first	one?	Are	the	files	actually	searched
concurrently?


