
Chapter	8.	Streams

Topics	in	This	Chapter
	8.1	From	Iterating	to	Stream	Operations
	8.2	Stream	Creation
	8.3	The	filter,	map,	and	flatMap	Methods
	8.4	Extracting	Substreams	and	Combining	Streams
	8.5	Other	Stream	Transformations
	8.6	Simple	Reductions
	8.7	The	Optional	Type
	8.8	Collecting	Results
	8.9	Collecting	into	Maps
	8.10	Grouping	and	Partitioning
	8.11	Downstream	Collectors
	8.12	Reduction	Operations
	8.13	Primitive	Type	Streams
	8.14	Parallel	Streams
	Exercises

Streams	provide	a	view	of	data	that	lets	you	specify	computations	at	a	higher
conceptual	level	than	with	collections.	With	a	stream,	you	specify	what	you	want
to	have	done,	not	how	to	do	it.	You	leave	the	scheduling	of	operations	to	the
implementation.	For	example,	suppose	you	want	to	compute	the	average	of	a
certain	property.	You	specify	the	source	of	data	and	the	property,	and	the	stream
library	can	then	optimize	the	computation,	for	example	by	using	multiple	threads
for	computing	sums	and	counts	and	combining	the	results.
The	key	points	of	this	chapter	are:
1.	Iterators	imply	a	specific	traversal	strategy	and	prohibit	efficient	concurrent
execution.

2.	You	can	create	streams	from	collections,	arrays,	generators,	or	iterators.
3.	Use	filter	to	select	elements	and	map	to	transform	elements.
4.	Other	operations	for	transforming	streams	include	limit,	distinct,	and

sorted.
5.	To	obtain	a	result	from	a	stream,	use	a	reduction	operator	such	as	count,
max,	min,	findFirst,	or	findAny.	Some	of	these	methods	return	an
Optional	value.

6.	The	Optional	type	is	intended	as	a	safe	alternative	to	working	with	null
values.	To	use	it	safely,	take	advantage	of	the	ifPresent	and	orElse
methods.

7.	You	can	collect	stream	results	in	collections,	arrays,	strings,	or	maps.
8.	The	groupingBy	and	partitioningBy	methods	of	the	Collectors
class	allow	you	to	split	the	contents	of	a	stream	into	groups,	and	to	obtain	a
result	for	each	group.

9.	There	are	specialized	streams	for	the	primitive	types	int,	long,	and
double.

10.	Parallel	streams	automatically	parallelize	stream	operations.

8.1	From	Iterating	to	Stream	Operations
When	you	process	a	collection,	you	usually	iterate	over	its	elements	and	do	some
work	with	each	of	them.	For	example,	suppose	we	want	to	count	all	long	words
in	a	book.	First,	let's	put	them	into	a	list:
Click	here	to	view	code	image

String	contents	=	new	String(Files.readAllBytes(

Paths.get("alice.txt")),	StandardCharsets.UTF_8);	//	Read	file	into

string

List<String>	words	=	List.of(contents.split("\\PL+"));

//	Split	into	words;	nonletters	are	delimiters

Now	we	are	ready	to	iterate:
Click	here	to	view	code	image

int	count	=	0;

for	(String	w	:	words)	{

if	(w.length()	>	12)	count++;

}

With	streams,	the	same	operation	looks	like	this:
Click	here	to	view	code	image

long	count	=	words.stream()

.filter(w	->	w.length()	>	12)

.count();

Now	you	don't	have	to	scan	the	loop	for	evidence	of	filtering	and	counting.	The
method	names	tell	you	right	away	what	the	code	intends	to	do.	Moreover,	where
the	loop	prescribes	the	order	of	operations	in	complete	detail,	a	stream	is	able	to
schedule	the	operations	any	way	it	wants,	as	long	as	the	result	is	correct.
Simply	changing	stream	into	parallelStream	allows	the	stream	library	to
do	the	filtering	and	counting	in	parallel.
Click	here	to	view	code	image

long	count	=	words.parallelStream()

.filter(w	->	w.length()	>	12)

.count();

Streams	follow	the	“what,	not	how”	principle.	In	our	stream	example,	we
describe	what	needs	to	be	done:	get	the	long	words	and	count	them.	We	don't
specify	in	which	order,	or	in	which	thread,	this	should	happen.	In	contrast,	the
loop	at	the	beginning	of	this	section	specifies	exactly	how	the	computation
should	work,	and	thereby	forgoes	any	chances	of	optimization.
A	stream	seems	superficially	similar	to	a	collection,	allowing	you	to	transform
and	retrieve	data.	But	there	are	significant	differences:	1.	A	stream	does	not	store
its	elements.	They	may	be	stored	in	an	underlying	collection	or	generated	on
demand.
2.	Stream	operations	don't	mutate	their	source.	For	example,	the	filter
method	does	not	remove	elements	from	a	stream,	but	it	yields	a	new	stream	in
which	they	are	not	present.

3.	Stream	operations	are	lazy	when	possible.	This	means	they	are	not	executed
until	their	result	is	needed.	For	example,	if	you	only	ask	for	the	first	five	long
words	instead	of	all,	the	filter	method	will	stop	filtering	after	the	fifth
match.	As	a	consequence,	you	can	even	have	infinite	streams!

Let	us	have	another	look	at	the	example.	The	stream	and	parallelStream
methods	yield	a	stream	for	the	words	list.	The	filter	method	returns	another
stream	that	contains	only	the	words	of	length	greater	than	twelve.	The	count
method	reduces	that	stream	to	a	result.
This	workflow	is	typical	when	you	work	with	streams.	You	set	up	a	pipeline	of
operations	in	three	stages:
1.	Create	a	stream.
2.	Specify	intermediate	operations	for	transforming	the	initial	stream	into
others,	possibly	in	multiple	steps.

3.	Apply	a	terminal	operation	to	produce	a	result.	This	operation	forces	the

execution	of	the	lazy	operations	that	precede	it.	Afterwards,	the	stream	can	no
longer	be	used.

In	our	example,	the	stream	was	created	with	the	stream	or
parallelStream	method.	The	filter	method	transformed	it,	and	count
was	the	terminal	operation.
In	the	next	section,	you	will	see	how	to	create	a	stream.	The	subsequent	three
sections	deal	with	stream	transformations.	They	are	followed	by	five	sections	on
terminal	operations.

8.2	Stream	Creation
You	have	already	seen	that	you	can	turn	any	collection	into	a	stream	with	the
stream	method	of	the	Collection	interface.	If	you	have	an	array,	use	the
static	Stream.of	method	instead.
Click	here	to	view	code	image

Stream<String>	words	=	Stream.of(contents.split("\\PL+"));

//	split	returns	a	String[]	array

The	of	method	has	a	varargs	parameter,	so	you	can	construct	a	stream	from	any
number	of	arguments:
Click	here	to	view	code	image

Stream<String>	song	=	Stream.of("gently",	"down",	"the",	"stream");

Use	Arrays.stream(array,	from,	to)	to	make	a	stream	from	a	part
of	an	array.
To	make	a	stream	with	no	elements,	use	the	static	Stream.empty	method:
Click	here	to	view	code	image

Stream<String>	silence	=	Stream.empty();

//	Generic	type	<String>	is	inferred;	same	as	Stream.<String>empty()

The	Stream	interface	has	two	static	methods	for	making	infinite	streams.	The
generate	method	takes	a	function	with	no	arguments	(or,	technically,	an
object	of	the	Supplier<T>	interface—see	Section	3.6.2,	“Choosing	a
Functional	Interface,”	page	120).	Whenever	a	stream	value	is	needed,	that
function	is	called	to	produce	a	value.	You	can	get	a	stream	of	constant	values	as
Click	here	to	view	code	image
Stream<String>	echos	=	Stream.generate(()	->	"Echo");

or	a	stream	of	random	numbers	as

Click	here	to	view	code	image

Stream<Double>	randoms	=	Stream.generate(Math::random);

To	produce	sequences	such	as	0	1	2	3	...,	use	the	iterate	method
instead.	It	takes	a	“seed”	value	and	a	function	(technically,	a
UnaryOperator<T>)	and	repeatedly	applies	the	function	to	the	previous
result.	For	example,	Click	here	to	view	code	image
Stream<BigInteger>	integers

=	Stream.iterate(BigInteger.ZERO,	n	->	n.add(BigInteger.ONE));

The	first	element	in	the	sequence	is	the	seed	BigInteger.ZERO.	The	second
element	is	f(seed),	or	1	(as	a	big	integer).	The	next	element	is
f(f(seed)),	or	2,	and	so	on.
To	produce	a	finite	stream	instead,	add	a	predicate	that	specifies	when	the
iteration	should	finish:
Click	here	to	view	code	image

BigInteger	limit	=	new	BigInteger("10000000");

Stream<BigInteger>	integers

=	Stream.iterate(BigInteger.ZERO,

n	->	n.compareTo(limit)	<	0,

n	->	n.add(BigInteger.ONE));

As	soon	as	the	predicate	rejects	an	iteratively	generated	value,	the	stream	ends.

	Note

A	number	of	methods	in	the	Java	API	yield	streams.	For	example,	the
Pattern	class	has	a	method	splitAsStream	that	splits	a
CharSequence	by	a	regular	expression.	You	can	use	the	following
statement	to	split	a	string	into	words:	Click	here	to	view	code	image
Stream<String>	words	=

Pattern.compile("\\PL+").splitAsStream(contents);

The	Scanner.tokens	method	yields	a	stream	of	tokens	of	a	scanner.
Another	way	to	get	a	stream	of	words	from	a	string	is	Click	here	to	view
code	image
Stream<String>	words	=	new	Scanner(contents).tokens();

The	static	Files.lines	method	returns	a	Stream	of	all	lines	in	a
file:

Click	here	to	view	code	image

try	(Stream<String>	lines	=	Files.lines(path))	{

Process	lines
}

8.3	The	filter,	map,	and	flatMap	Methods
A	stream	transformation	produces	a	stream	whose	elements	are	derived	from
those	of	another	stream.	You	have	already	seen	the	filter	transformation	that
yields	a	new	stream	with	those	elements	that	match	a	certain	condition.	Here,	we
transform	a	stream	of	strings	into	another	stream	containing	only	long	words:
Click	here	to	view	code	image

List<String>	words	=	...;

Stream<String>	longWords	=	words.stream().filter(w	->	w.length()	>

12);

The	argument	of	filter	is	a	Predicate<T>—that	is,	a	function	from	T	to
boolean.
Often,	you	want	to	transform	the	values	in	a	stream	in	some	way.	Use	the	map
method	and	pass	the	function	that	carries	out	the	transformation.	For	example,
you	can	transform	all	words	to	lowercase	like	this:	Click	here	to	view	code
image
Stream<String>	lowercaseWords	=

words.stream().map(String::toLowerCase);

Here,	we	used	map	with	a	method	reference.	Often,	you	will	use	a	lambda
expression	instead:
Click	here	to	view	code	image

Stream<String>	firstLetters	=	words.stream().map(s	->	s.substring(0,

1));

The	resulting	stream	contains	the	first	letter	of	each	word.
When	you	use	map,	a	function	is	applied	to	each	element,	and	the	result	is	a	new
stream	with	the	results.	Now,	suppose	you	have	a	function	that	returns	not	just
one	value	but	a	stream	of	values.	Here	is	an	example—a	method	that	turns	a
string	into	a	stream	of	strings,	namely	the	individual	code	points:	Click	here	to
view	code	image
public	static	Stream<String>	codePoints(String	s)	{

List<String>	result	=	new	ArrayList<>();

int	i	=	0;

while	(i	<	s.length())	{

int	j	=	s.offsetByCodePoints(i,	1);

result.add(s.substring(i,	j));

i	=	j;

}

return	result.stream();

}

This	method	correctly	handles	Unicode	characters	that	require	two	char	values
because	that's	the	right	thing	to	do.	But	you	don't	have	to	dwell	on	that.
For	example,	codePoints("boat")	is	the	stream	["b",	"o",	"a",
"t"].
Now	let's	map	the	codePoints	method	on	a	stream	of	strings:
Click	here	to	view	code	image

Stream<Stream<String>>	result	=	words.stream().map(w	->

codePoints(w));

You	will	get	a	stream	of	streams,	like	[...	["y",	"o",	"u",	"r"],
["b",	"o",	"a",	"t"],	...].	To	flatten	it	out	to	a	single	stream	[...
"y",	"o",	"u",	"r",	"b",	"o",	"a",	"t",	...],	use	the
flatMap	method	instead	of	map:	Click	here	to	view	code	image
Stream<String>	flatResult	=	words.stream().flatMap(w	->	codePoints(w))

//	Calls	codePoints	on	each	word	and	flattens	the	results

	Note

You	will	find	a	flatMap	method	in	classes	other	than	streams.	It	is	a
general	concept	in	computer	science.	Suppose	you	have	a	generic	type	G
(such	as	Stream)	and	functions	f	from	some	type	T	to	G<U>	and	g
from	U	to	G<V>.	Then	you	can	compose	them—that	is,	first	apply	f	and
then	g,	by	using	flatMap.	This	is	a	key	idea	in	the	theory	of	monads.
But	don't	worry—you	can	use	flatMap	without	knowing	anything
about	monads.

8.4	Extracting	Substreams	and	Combining	Streams
The	call	stream.limit(n)	returns	a	new	stream	that	ends	after	n	elements
(or	when	the	original	stream	ends	if	it	is	shorter).	This	method	is	particularly
useful	for	cutting	infinite	streams	down	to	size.	For	example,
Click	here	to	view	code	image

Stream<Double>	randoms	=	Stream.generate(Math::random).limit(100);

yields	a	stream	with	100	random	numbers.
The	call	stream.skip(n)	does	the	exact	opposite.	It	discards	the	first	n
elements.	This	is	handy	in	our	book	reading	example	where,	due	to	the	way	the
split	method	works,	the	first	element	is	an	unwanted	empty	string.	We	can
make	it	go	away	by	calling	skip:	Click	here	to	view	code	image
Stream<String>	words	=	Stream.of(contents.split("\\PL+")).skip(1);

The	stream.takeWhile(predicate)	call	takes	all	elements	from	the
stream	while	the	predicate	is	true,	and	then	stops.
For	example,	suppose	we	use	the	codePoints	method	of	the	preceding
section	to	split	a	string	into	characters,	and	we	want	to	collect	all	initial	digits.
The	takeWhile	method	can	do	this:	Click	here	to	view	code	image
Stream<String>	initialDigits	=	codePoints(str).takeWhile(

s	->	"0123456789".contains(s));

The	dropWhile	method	does	the	opposite,	dropping	elements	while	a
condition	is	true	and	yielding	a	stream	of	all	elements	starting	with	the	first	one
for	which	the	condition	was	false.	For	example,	Click	here	to	view	code	image
Stream<String>	withoutInitialWhiteSpace	=	codePoints(str).dropWhile(

s	->	s.trim().length()	==	0);

You	can	concatenate	two	streams	with	the	static	concat	method	of	the
Stream	class:
Click	here	to	view	code	image

Stream<String>	combined	=	Stream.concat(

codePoints("Hello"),	codePoints("World"));

//	Yields	the	stream	["H",	"e",	"l",	"l",	"o",	"W",	"o",	"r",	"l",

"d"]

Of	course,	the	first	stream	should	not	be	infinite—otherwise	the	second	wouldn’t
ever	get	a	chance.

8.5	Other	Stream	Transformations
The	distinct	method	returns	a	stream	that	yields	elements	from	the	original
stream,	in	the	same	order,	except	that	duplicates	are	suppressed.	The	duplicates
need	not	be	adjacent.
Click	here	to	view	code	image

Stream<String>	uniqueWords

=	Stream.of("merrily",	"merrily",	"merrily",	"gently").distinct();

//	Only	one	"merrily"	is	retained

For	sorting	a	stream,	there	are	several	variations	of	the	sorted	method.	One
works	for	streams	of	Comparable	elements,	and	another	accepts	a
Comparator.	Here,	we	sort	strings	so	that	the	longest	ones	come	first:	Click
here	to	view	code	image
Stream<String>	longestFirst

=

words.stream().sorted(Comparator.comparing(String::length).reversed());

As	with	all	stream	transformations,	the	sorted	method	yields	a	new	stream
whose	elements	are	the	elements	of	the	original	stream	in	sorted	order.
Of	course,	you	can	sort	a	collection	without	using	streams.	The	sorted	method
is	useful	when	the	sorting	process	is	part	of	a	stream	pipeline.
Finally,	the	peek	method	yields	another	stream	with	the	same	elements	as	the
original,	but	a	function	is	invoked	every	time	an	element	is	retrieved.	That	is
handy	for	debugging:	Click	here	to	view	code	image
Object[]	powers	=	Stream.iterate(1.0,	p	->	p	*	2)

.peek(e	->	System.out.println("Fetching	"	+	e))

.limit(20).toArray();

When	an	element	is	actually	accessed,	a	message	is	printed.	This	way	you	can
verify	that	the	infinite	stream	returned	by	iterate	is	processed	lazily.

	Tip

When	you	use	a	debugger	to	debug	a	stream	computation,	you	can	set	a
breakpoint	in	a	method	that	is	called	from	one	of	the	transformations.
With	most	IDEs,	you	can	also	set	breakpoints	in	lambda	expressions.	If
you	just	want	to	know	what	happens	at	a	particular	point	in	the	stream
pipeline,	add	.peek(x	->	{
return;	})
and	set	a	breakpoint	on	the	second	line.

8.6	Simple	Reductions
Now	that	you	have	seen	how	to	create	and	transform	streams,	we	will	finally	get
to	the	most	important	point—getting	answers	from	the	stream	data.	The	methods

that	we	cover	in	this	section	are	called	reductions.	Reductions	are	terminal
operations.	They	reduce	the	stream	to	a	nonstream	value	that	can	be	used	in	your
program.
You	have	already	seen	a	simple	reduction:	the	count	method	that	returns	the
number	of	elements	of	a	stream.
Other	simple	reductions	are	max	and	min	that	return	the	largest	or	smallest
value.	There	is	a	twist—these	methods	return	an	Optional<T>	value	that
either	wraps	the	answer	or	indicates	that	there	is	none	(because	the	stream
happened	to	be	empty).	In	the	olden	days,	it	was	common	to	return	null	in
such	a	situation.	But	that	can	lead	to	null	pointer	exceptions	when	it	happens	in
an	incompletely	tested	program.	The	Optional	type	is	a	better	way	of
indicating	a	missing	return	value.	We	discuss	the	Optional	type	in	detail	in
the	next	section.	Here	is	how	you	can	get	the	maximum	of	a	stream:	Click	here
to	view	code	image
Optional<String>	largest	=	words.max(String::compareToIgnoreCase);

System.out.println("largest:	"	+	largest.orElse(""));

The	findFirst	returns	the	first	value	in	a	nonempty	collection.	It	is	often
useful	when	combined	with	filter.	For	example,	here	we	find	the	first	word
that	starts	with	the	letter	Q,	if	it	exists:	Click	here	to	view	code	image
Optional<String>	startsWithQ

=	words.filter(s	->	s.startsWith("Q")).findFirst();

If	you	are	OK	with	any	match,	not	just	the	first	one,	use	the	findAny	method.
This	is	effective	when	you	parallelize	the	stream,	since	the	stream	can	report	any
match	that	it	finds	instead	of	being	constrained	to	the	first	one.
Click	here	to	view	code	image

Optional<String>	startsWithQ

=	words.parallel().filter(s	->	s.startsWith("Q")).findAny();

If	you	just	want	to	know	if	there	is	a	match,	use	anyMatch.	That	method	takes
a	predicate	argument,	so	you	won't	need	to	use	filter.
Click	here	to	view	code	image

boolean	aWordStartsWithQ

=	words.parallel().anyMatch(s	->	s.startsWith("Q"));

There	are	methods	allMatch	and	noneMatch	that	return	true	if	all	or	no
elements	match	a	predicate.	These	methods	also	benefit	from	being	run	in
parallel.

8.7	The	Optional	Type
An	Optional<T>	object	is	a	wrapper	for	either	an	object	of	type	T	or	no
object.	In	the	former	case,	we	say	that	the	value	is	present.	The	Optional<T>
type	is	intended	as	a	safer	alternative	for	a	reference	of	type	T	that	either	refers
to	an	object	or	is	null.	But	it	is	only	safer	if	you	use	it	right.	The	next	section
shows	you	how.

8.7.1	How	to	Work	with	Optional	Values
The	key	to	using	Optional	effectively	is	to	use	a	method	that	either	produces
an	alternative	if	the	value	is	not	present,	or	consumes	the	value	only	if	it	is
present.
Let	us	look	at	the	first	strategy.	Often,	there	is	a	default	that	you	want	to	use
when	there	was	no	match,	perhaps	the	empty	string:	Click	here	to	view	code
image
String	result	=	optionalString.orElse("");

//	The	wrapped	string,	or	""	if	none

You	can	also	invoke	code	to	compute	the	default:
Click	here	to	view	code	image

String	result	=	optionalString.orElseGet(()	->

System.getProperty("myapp.default"));

//	The	function	is	only	called	when	needed

Or	you	can	throw	an	exception	if	there	is	no	value:
Click	here	to	view	code	image

String	result	=

optionalString.orElseThrow(IllegalStateException::new);

//	Supply	a	method	that	yields	an	exception	object

The	orElseGet	method	assumes	that	the	alternative	computation	always
succeeds.	If	that	computation	can	fail,	use	the	or	method:	Click	here	to	view
code	image
Optional<String>	result	=	optionalString.or(()	->

Optional.ofNullable(System.getProperty("myapp.default")));

If	optionalString	has	a	value,	then	result	is	optionalString.	If
not,	and	System.getProperty("myapp.default")	returns	a	non-
null	value,	then	that	value,	wrapped	in	an	Optional,	becomes	the	result.
Otherwise,	the	result	is	empty.

You	have	just	seen	how	to	produce	an	alternative	if	no	value	is	present.	The
other	strategy	for	working	with	optional	values	is	to	consume	the	value	only	if	it
is	present.
The	ifPresent	method	accepts	a	function.	If	the	optional	value	exists,	it	is
passed	to	that	function.	Otherwise,	nothing	happens.
Click	here	to	view	code	image

optionalValue.ifPresent(v	->	Process	v);

For	example,	if	you	want	to	add	the	value	to	a	set	if	it	is	present,	call
Click	here	to	view	code	image

optionalValue.ifPresent(v	->	results.add(v));

or	simply
Click	here	to	view	code	image

optionalValue.ifPresent(results::add);

If	you	want	to	take	one	action	if	the	Optional	has	a	value	and	another	action
if	it	doesn't,	use	ifPresentOrElse:	Click	here	to	view	code	image
optionalValue.ifPresentOrElse(

v	->	Process	v,
()	->	Do	something	else);

When	using	ifPresent	to	pass	an	optional	value	to	a	function,	the	function
return	value	is	lost.	If	you	want	to	process	the	function	result,	use	map	instead:
Click	here	to	view	code	image
Optional<Boolean>	added	=	optionalValue.map(results::add);

Now	added	has	one	of	three	values:	true	or	false	wrapped	into	an
Optional,	if	optionalValue	was	present,	or	an	empty	Optional
otherwise.

	Note

This	map	method	is	the	analog	of	the	map	method	of	the	Stream
interface	that	you	have	seen	in	Section	8.3,	“The	filter,	map,	and
flatMap	Methods”	(page	263).	Simply	imagine	an	optional	value	as	a
stream	of	size	zero	or	one.	The	result	again	has	size	zero	or	one,	and	in
the	latter	case,	the	function	has	been	applied.

8.7.2	How	Not	to	Work	with	Optional	Values
If	you	don't	use	Optional	values	correctly,	you	have	no	benefit	over	the
“something	or	null”	approach	of	the	past.
The	get	method	gets	the	wrapped	element	of	an	Optional	value	if	it	exists,
or	throws	a	NoSuchElementException	if	it	doesn’t.	Therefore,	Click	here
to	view	code	image
Optional<T>	optionalValue	=	...;

optionalValue.get().someMethod()

is	no	safer	than
T	value	=	...;

value.someMethod();

The	isPresent	method	reports	whether	an	Optional<T>	object	has	a
value.	But
Click	here	to	view	code	image

if	(optionalValue.isPresent())	optionalValue.get().someMethod();

is	no	easier	than
Click	here	to	view	code	image

if	(value	!=	null)	value.someMethod();

8.7.3	Creating	Optional	Values
So	far,	we	have	discussed	how	to	consume	an	Optional	object	someone	else
created.	If	you	want	to	write	a	method	that	creates	an	Optional	object,	there
are	several	static	methods	for	that	purpose,	including
Optional.of(result)	and	Optional.empty().	For	example,
Click	here	to	view	code	image

public	static	Optional<Double>	inverse(Double	x)	{

return	x	==	0	?	Optional.empty()	:	Optional.of(1	/	x);

}

The	ofNullable	method	is	intended	as	a	bridge	from	possibly	null	values	to
optional	values.	Optional.ofNullable(obj)	returns
Optional.of(obj)	if	obj	is	not	null	and	Optional.empty()
otherwise.

8.7.4	Composing	Optional	Value	Functions	with	flatMap

Suppose	you	have	a	method	f	yielding	an	Optional<T>,	and	the	target	type	T
has	a	method	g	yielding	an	Optional<U>.	If	they	were	normal	methods,	you
could	compose	them	by	calling	s.f().g().	But	that	composition	doesn’t
work	since	s.f()	has	type	Optional<T>,	not	T.	Instead,	call
Click	here	to	view	code	image

Optional<U>	result	=	s.f().flatMap(T::g);

If	s.f()	is	present,	then	g	is	applied	to	it.	Otherwise,	an	empty
Optional<U>	is	returned.
Clearly,	you	can	repeat	that	process	if	you	have	more	methods	or	lambdas	that
yield	Optional	values.	You	can	then	build	a	pipeline	of	steps,	simply	by
chaining	calls	to	flatMap,	that	will	succeed	only	when	all	parts	do.
For	example,	consider	the	safe	inverse	method	of	the	preceding	section.
Suppose	we	also	have	a	safe	square	root:
Click	here	to	view	code	image

public	static	Optional<Double>	squareRoot(Double	x)	{

return	x	<	0	?	Optional.empty()	:	Optional.of(Math.sqrt(x));

}

Then	you	can	compute	the	square	root	of	the	inverse	as
Click	here	to	view	code	image

Optional<Double>	result	=	inverse(x).flatMap(MyMath::squareRoot);

or,	if	you	prefer,
Click	here	to	view	code	image

Optional<Double>	result

=	Optional.of(-4.0).flatMap(Demo::inverse).flatMap(Demo::squareRoot);

If	either	the	inverse	method	or	the	squareRoot	returns
Optional.empty(),	the	result	is	empty.

	Note

You	have	already	seen	a	flatMap	method	in	the	Stream	interface
(see	Section	8.3,	“The	filter,	map,	and	flatMap	Methods,”	page
263).	That	method	was	used	to	compose	two	methods	that	yield	streams,
by	flattening	out	the	resulting	stream	of	streams.	The
Optional.flatMap	method	works	in	the	same	way	if	you	interpret

an	optional	value	as	having	zero	or	one	elements.

8.7.5	Turning	an	Optional	Into	a	Stream
The	stream	method	turns	an	Optional<T>	into	a	Stream<T>	with	zero	or
one	elements.	Sure,	why	not,	but	why	would	you	ever	want	that?
This	becomes	useful	with	methods	that	return	an	Optional	result.	Suppose
you	have	a	stream	of	user	IDs	and	a	method
Click	here	to	view	code	image

Optional<User>	lookup(String	id)

How	do	you	get	a	stream	of	users,	skipping	those	IDs	that	are	invalid?
Of	course,	you	can	filter	out	the	invalid	IDs	and	then	apply	get	to	the	remaining
ones:
Click	here	to	view	code	image

Stream<String>	ids	=	...;

Stream<User>	users	=	ids.map(Users::lookup)

.filter(Optional::isPresent)

.map(Optional::get);

But	that	uses	the	isPresent	and	get	methods	that	we	warned	about.	It	is
more	elegant	to	call	Click	here	to	view	code	image
Stream<User>	users	=	ids.map(Users::lookup)

.flatMap(Optional::stream);

Each	call	to	stream	returns	a	stream	with	0	or	1	elements.	The	flatMap
method	combines	them	all.	That	means	the	nonexistent	users	are	simply
dropped.

	Note

In	this	section,	we	consider	the	happy	scenario	in	which	we	have	a
method	that	returns	an	Optional	value.	These	days,	many	methods
return	null	when	there	is	no	valid	result.	Suppose
Users.classicLookup(id)	returns	a	User	object	or	null,	not
an	Optional<User>.	Then	you	can	of	course	filter	out	the	null
values:	Click	here	to	view	code	image
Stream<User>	users	=	ids.map(Users::classicLookup)

.filter(Objects::nonNull);

But	if	you	prefer	the	flatMap	approach,	you	can	use
Click	here	to	view	code	image

Stream<User>	users	=	ids.flatMap(

id	->	Stream.ofNullable(Users.classicLookup(id)));

or
Click	here	to	view	code	image

Stream<User>	users	=	ids.map(Users::classicLookup)

.flatMap(Stream::ofNullable);

The	call	Stream.ofNullable(obj)	yields	an	empty	stream	if	obj
is	null	or	a	stream	just	containing	obj	otherwise.

8.8	Collecting	Results
When	you	are	done	with	a	stream,	you	will	often	want	to	look	at	the	results.	You
can	call	the	iterator	method,	which	yields	an	old-fashioned	iterator	that	you
can	use	to	visit	the	elements.
Alternatively,	you	can	call	the	forEach	method	to	apply	a	function	to	each
element:
Click	here	to	view	code	image

stream.forEach(System.out::println);

On	a	parallel	stream,	the	forEach	method	traverses	elements	in	arbitrary	order.
If	you	want	to	process	them	in	stream	order,	call	forEachOrdered	instead.
Of	course,	you	might	then	give	up	some	or	all	of	the	benefits	of	parallelism.
But	more	often	than	not,	you	will	want	to	collect	the	result	in	a	data	structure.
You	can	call	toArray	and	get	an	array	of	the	stream	elements.
Since	it	is	not	possible	to	create	a	generic	array	at	runtime,	the	expression
stream.toArray()	returns	an	Object[]	array.	If	you	want	an	array	of	the
correct	type,	pass	in	the	array	constructor:	Click	here	to	view	code	image
String[]	result	=	stream.toArray(String[]::new);

//	stream.toArray()	has	type	Object[]

For	collecting	stream	elements	to	another	target,	there	is	a	convenient	collect
method	that	takes	an	instance	of	the	Collector	interface.	The	Collectors
class	provides	a	large	number	of	factory	methods	for	common	collectors.	To
collect	a	stream	into	a	list	or	set,	simply	call	Click	here	to	view	code	image

List<String>	result	=	stream.collect(Collectors.toList());

or
Click	here	to	view	code	image

Set<String>	result	=	stream.collect(Collectors.toSet());

If	you	want	to	control	which	kind	of	set	you	get,	use	the	following	call	instead:
Click	here	to	view	code	image

TreeSet<String>	result	=

stream.collect(Collectors.toCollection(TreeSet::new));

Suppose	you	want	to	collect	all	strings	in	a	stream	by	concatenating	them.	You
can	call
Click	here	to	view	code	image

String	result	=	stream.collect(Collectors.joining());

If	you	want	a	delimiter	between	elements,	pass	it	to	the	joining	method:
Click	here	to	view	code	image

String	result	=	stream.collect(Collectors.joining(",	"));

If	your	stream	contains	objects	other	than	strings,	you	need	to	first	convert	them
to	strings,	like	this:
Click	here	to	view	code	image

String	result	=

stream.map(Object::toString).collect(Collectors.joining(",	"));

If	you	want	to	reduce	the	stream	results	to	a	sum,	count,	average,	maximum,	or
minimum,	use	one	of	the	summarizing(Int|Long|Double)	methods.	These
methods	take	a	function	that	maps	the	stream	objects	to	numbers	and	yield	a
result	of	type	(Int|Long|Double)SummaryStatistics,	simultaneously
computing	the	sum,	count,	average,	maximum,	and	minimum.
Click	here	to	view	code	image

IntSummaryStatistics	summary	=	stream.collect(

Collectors.summarizingInt(String::length));

double	averageWordLength	=	summary.getAverage();

double	maxWordLength	=	summary.getMax();

8.9	Collecting	into	Maps
Suppose	you	have	a	Stream<Person>	and	want	to	collect	the	elements	into	a
map	so	that	later	you	can	look	up	people	by	their	ID.	The

Collectors.toMap	method	has	two	function	arguments	that	produce	the
map's	keys	and	values.	For	example,
Click	here	to	view	code	image

Map<Integer,	String>	idToName	=	people.collect(

Collectors.toMap(Person::getId,	Person::getName));

In	the	common	case	when	the	values	should	be	the	actual	elements,	use
Function.identity()	for	the	second	function.
Click	here	to	view	code	image

Map<Integer,	Person>	idToPerson	=	people.collect(

Collectors.toMap(Person::getId,	Function.identity()));

If	there	is	more	than	one	element	with	the	same	key,	there	is	a	conflict,	and	the
collector	will	throw	an	IllegalStateException.	You	can	override	that
behavior	by	supplying	a	third	function	argument	that	resolves	the	conflict	and
determines	the	value	for	the	key,	given	the	existing	and	the	new	value.	Your
function	could	return	the	existing	value,	the	new	value,	or	a	combination	of
them.
Here,	we	construct	a	map	that	contains,	for	each	language	in	the	available
locales,	as	key	its	name	in	your	default	locale	(such	as	"German"),	and	as
value	its	localized	name	(such	as	"Deutsch").
Click	here	to	view	code	image

Stream<Locale>	locales	=	Stream.of(Locale.getAvailableLocales());

Map<String,	String>	languageNames	=	locales.collect(

Collectors.toMap(

Locale::getDisplayLanguage,

loc	->	loc.getDisplayLanguage(loc),

(existingValue,	newValue)	->	existingValue));

We	don't	care	that	the	same	language	might	occur	twice	(for	example,	German	in
Germany	and	in	Switzerland),	so	we	just	keep	the	first	entry.

	Note

In	this	chapter,	I	use	the	Locale	class	as	a	source	of	an	interesting	data
set.	See	Chapter	13	for	more	information	about	working	with	locales.

Now	suppose	we	want	to	know	all	languages	in	a	given	country.	Then	we	need	a
Map<String,	Set<String>>.	For	example,	the	value	for
"Switzerland"	is	the	set	[French,	German,	Italian].	At	first,	we

store	a	singleton	set	for	each	language.	Whenever	a	new	language	is	found	for	a
given	country,	we	form	the	union	of	the	existing	and	the	new	set.
Click	here	to	view	code	image

Map<String,	Set<String>>	countryLanguageSets	=	locales.collect(

Collectors.toMap(

Locale::getDisplayCountry,

l	->	Collections.singleton(l.getDisplayLanguage()),

(a,	b)	->	{	//	Union	of	a	and	b

Set<String>	union	=	new	HashSet<>(a);

union.addAll(b);

return	union;	}));

You	will	see	a	simpler	way	of	obtaining	this	map	in	the	next	section.
If	you	want	a	TreeMap,	supply	the	constructor	as	the	fourth	argument.	You
must	provide	a	merge	function.	Here	is	one	of	the	examples	from	the	beginning
of	the	section,	now	yielding	a	TreeMap:	Click	here	to	view	code	image
Map<Integer,	Person>	idToPerson	=	people.collect(

Collectors.toMap(

Person::getId,

Function.identity(),

(existingValue,	newValue)	->	{	throw	new	IllegalStateException();	},

TreeMap::new));

	Note

For	each	of	the	toMap	methods,	there	is	an	equivalent
toConcurrentMap	method	that	yields	a	concurrent	map.	A	single
concurrent	map	is	used	in	the	parallel	collection	process.	When	used
with	a	parallel	stream,	a	shared	map	is	more	efficient	than	merging
maps.	Note	that	elements	are	no	longer	collected	in	stream	order,	but
that	doesn't	usually	make	a	difference.

8.10	Grouping	and	Partitioning
In	the	preceding	section,	you	saw	how	to	collect	all	languages	in	a	given	country.
But	the	process	was	a	bit	tedious.	You	had	to	generate	a	singleton	set	for	each
map	value	and	then	specify	how	to	merge	the	existing	and	new	values.	Forming
groups	of	values	with	the	same	characteristic	is	very	common,	and	the
groupingBy	method	supports	it	directly.
Let’s	look	at	the	problem	of	grouping	locales	by	country.	First,	form	this	map:
Click	here	to	view	code	image

Map<String,	List<Locale>>	countryToLocales	=	locales.collect(

Collectors.groupingBy(Locale::getCountry));

The	function	Locale::getCountry	is	the	classifier	function	of	the
grouping.	You	can	now	look	up	all	locales	for	a	given	country	code,	for	example
Click	here	to	view	code	image
List<Locale>	swissLocales	=	countryToLocales.get("CH");

//	Yields	locales	[it_CH,	de_CH,	fr_CH]

	Note

A	quick	refresher	on	locales:	Each	locale	has	a	language	code	(such	as
en	for	English)	and	a	country	code	(such	as	US	for	the	United	States).
The	locale	en_US	describes	English	in	the	United	States,	and	en_IE	is
English	in	Ireland.	Some	countries	have	multiple	locales.	For	example,
ga_IE	is	Gaelic	in	Ireland,	and,	as	the	preceding	example	shows,	my
JVM	knows	three	locales	in	Switzerland.

When	the	classifier	function	is	a	predicate	function	(that	is,	a	function	returning
a	boolean	value),	the	stream	elements	are	partitioned	into	two	lists:	those
where	the	function	returns	true	and	the	complement.	In	this	case,	it	is	more
efficient	to	use	partitioningBy	instead	of	groupingBy.	For	example,
here	we	split	all	locales	into	those	that	use	English	and	all	others:	Click	here	to
view	code	image
Map<Boolean,	List<Locale>>	englishAndOtherLocales	=	locales.collect(

Collectors.partitioningBy(l	->	l.getLanguage().equals("en")));

List<Locale>	englishLocales	=	englishAndOtherLocales.get(true);

	Note

If	you	call	the	groupingByConcurrent	method,	you	get	a
concurrent	map	that,	when	used	with	a	parallel	stream,	is	concurrently
populated.	This	is	entirely	analogous	to	the	toConcurrentMap
method.

8.11	Downstream	Collectors
The	groupingBy	method	yields	a	map	whose	values	are	lists.	If	you	want	to
process	those	lists	in	some	way,	supply	a	downstream	collector.	For	example,	if

you	want	sets	instead	of	lists,	you	can	use	the	Collectors.toSet	collector
that	you	saw	in	the	preceding	section:
Click	here	to	view	code	image

Map<String,	Set<Locale>>	countryToLocaleSet	=	locales.collect(

groupingBy(Locale::getCountry,	toSet()));

	Note

In	this	example,	as	well	as	the	remaining	examples	of	this	section,	I
assume	a	static	import	of	java.util.stream.Collectors.*	to
make	the	expressions	easier	to	read.

Several	collectors	are	provided	for	reducing	grouped	elements	to	numbers:
•	counting	produces	a	count	of	the	collected	elements.	For	example,

Click	here	to	view	code	image

Map<String,	Long>	countryToLocaleCounts	=	locales.collect(

groupingBy(Locale::getCountry,	counting()));

counts	how	many	locales	there	are	for	each	country.
•	summing(Int|Long|Double)	takes	a	function	argument,	applies	the
function	to	the	downstream	elements,	and	produces	their	sum.	For	example,
Click	here	to	view	code	image
Map<String,	Integer>	stateToCityPopulation	=	cities.collect(

groupingBy(City::getState,	summingInt(City::getPopulation)));

computes	the	sum	of	populations	per	state	in	a	stream	of	cities.
•	maxBy	and	minBy	take	a	comparator	and	produce	maximum	and	minimum
of	the	downstream	elements.	For	example,	Click	here	to	view	code	image
Map<String,	Optional<City>>	stateToLargestCity	=	cities.collect(

groupingBy(City::getState,

maxBy(Comparator.comparing(City::getPopulation))));

produces	the	largest	city	per	state.
The	mapping	collector	applies	a	function	to	downstream	results,	and	it	requires
yet	another	collector	for	processing	its	results.	For	example,	Click	here	to	view
code	image
Map<String,	Optional<String>>	stateToLongestCityName	=	cities.collect(

groupingBy(City::getState,

mapping(City::getName,

maxBy(Comparator.comparing(String::length)))));

Here,	we	group	cities	by	state.	Within	each	state,	we	produce	the	names	of	the
cities	and	reduce	by	maximum	length.
The	mapping	method	also	yields	a	nicer	solution	to	a	problem	from	the
preceding	section—gathering	a	set	of	all	languages	in	a	country.
Click	here	to	view	code	image

Map<String,	Set<String>>	countryToLanguages	=	locales.collect(

groupingBy(Locale::getDisplayCountry,

mapping(Locale::getDisplayLanguage,

toSet())));

There	is	a	flatMapping	method	as	well,	for	use	with	functions	that	return
streams	(see	Exercise	8).
In	the	preceding	section,	I	used	toMap	instead	of	groupingBy.	In	this	form,
you	don't	need	to	worry	about	combining	the	individual	sets.
If	the	grouping	or	mapping	function	has	return	type	int,	long,	or	double,
you	can	collect	elements	into	a	summary	statistics	object,	as	discussed	in	Section
8.8,	“Collecting	Results”	(page	271).	For	example,	Click	here	to	view	code
image
Map<String,	IntSummaryStatistics>	stateToCityPopulationSummary	=

cities.collect(

groupingBy(City::getState,

summarizingInt(City::getPopulation)));

Then	you	can	get	the	sum,	count,	average,	minimum,	and	maximum	of	the
function	values	from	the	summary	statistics	objects	of	each	group.
The	filtering	collector	applies	a	filter	to	each	group,	for	example:
Click	here	to	view	code	image

Map<String,	Set<City>>	largeCitiesByState

=	cities.collect(

groupingBy(City::getState,

filtering(c	->	c.getPopulation()	>	500000,

toSet())));	//	States	without	large	cities	have	empty	sets

	Note

There	are	also	three	versions	of	a	reducing	method	that	apply	general
reductions,	as	described	in	the	next	section.

Composing	collectors	is	powerful,	but	it	can	also	lead	to	very	convoluted
expressions.	The	best	use	is	with	groupingBy	or	partitioningBy	to
process	the	“downstream”	map	values.	Otherwise,	simply	apply	methods	such	as
map,	reduce,	count,	max,	or	min	directly	on	streams.

8.12	Reduction	Operations
The	reduce	method	is	a	general	mechanism	for	computing	a	value	from	a
stream.	The	simplest	form	takes	a	binary	function	and	keeps	applying	it,	starting
with	the	first	two	elements.	It's	easy	to	explain	this	if	the	function	is	the	sum:
Click	here	to	view	code	image

List<Integer>	values	=	...;

Optional<Integer>	sum	=	values.stream().reduce((x,	y)	->	x	+	y);

In	this	case,	the	reduce	method	computes	v0	+	v1	+	v2	+	.	.	.	,	where	the	vi	are
the	stream	elements.	The	method	returns	an	Optional	because	there	is	no
valid	result	if	the	stream	is	empty.

	Note

In	this	case,	you	can	write	reduce(Integer::sum)	instead	of
reduce((x,	y)	->	x	+	y).

More	generally,	you	can	use	any	operation	that	combines	a	partial	result	x	with
the	next	value	y	to	yield	a	new	partial	result.
Here	is	another	way	of	looking	at	reductions.	Given	a	reduction	operation	op,	the
reduction	yields	v0	op	v1	op	v2	op	...,	where	vi	op	vi	+	1	denotes	the	function	call
op(vi,	vi	+	1).	There	are	many	operations	that	might	be	useful	in	practice,	such	as
sum,	product,	string	concatenation,	maximum	and	minimum,	set	union	and
intersection.
If	you	want	to	use	reduction	with	parallel	streams,	the	operation	must	be
associative:	It	shouldn't	matter	in	which	order	you	combine	the	elements.	In
math	notation,	(x	op	y)	op	z	must	be	equal	to	x	op	(y	op	z).	An	example	of	an
operation	that	is	not	associative	is	subtraction.	For	example,	(6	−	3)	−	2	≠	6	−	(3
−	2).
Often,	there	is	an	identity	e	such	that	e	op	x	=	x,	and	you	can	use	that	element	as
the	start	of	the	computation.	For	example,	0	is	the	identity	for	addition.	Then	call
the	second	form	of	reduce:	Click	here	to	view	code	image

List<Integer>	values	=	...;

Integer	sum	=	values.stream().reduce(0,	(x,	y)	->	x	+	y)

//	Computes	0	+	v0	+	v1	+	v2	+	...

The	identity	value	is	returned	if	the	stream	is	empty,	and	you	no	longer	need	to
deal	with	the	Optional	class.
Now	suppose	you	have	a	stream	of	objects	and	want	to	form	the	sum	of	some
property,	such	as	all	lengths	in	a	stream	of	strings.	You	can't	use	the	simple	form
of	reduce.	It	requires	a	function	(T,	T)	->	T,	with	the	same	types	for	the
arguments	and	the	result.	But	in	this	situation,	you	have	two	types:	The	stream
elements	have	type	String,	and	the	accumulated	result	is	an	integer.	There	is	a
form	of	reduce	that	can	deal	with	this	situation.
First,	you	supply	an	“accumulator”	function	(total,	word)	->	total	+
word.length().	That	function	is	called	repeatedly,	forming	the	cumulative
total.	But	when	the	computation	is	parallelized,	there	will	be	multiple
computations	of	this	kind,	and	you	need	to	combine	their	results.	You	supply	a
second	function	for	that	purpose.	The	complete	call	is	Click	here	to	view	code
image
int	result	=	words.reduce(0,

(total,	word)	->	total	+	word.length(),

(total1,	total2)	->	total1	+	total2);

	Note

In	practice,	you	probably	won't	use	the	reduce	method	a	lot.	It	is
usually	easier	to	map	to	a	stream	of	numbers	and	use	one	of	its	methods
to	compute	sum,	max,	or	min.	(We	discuss	streams	of	numbers	in
Section	8.13,	“Primitive	Type	Streams,”	page	279.)	In	this	particular
example,	you	could	have	called
words.mapToInt(String::length).sum(),	which	is	both
simpler	and	more	efficient	since	it	doesn’t	involve	boxing.

	Note

There	are	times	when	reduce	is	not	general	enough.	For	example,
suppose	you	want	to	collect	the	results	in	a	BitSet.	If	the	collection	is
parallelized,	you	can’t	put	the	elements	directly	into	a	single	BitSet
because	a	BitSet	object	is	not	threadsafe.	For	that	reason,	you	can't

use	reduce.	Each	segment	needs	to	start	out	with	its	own	empty	set,
and	reduce	only	lets	you	supply	one	identity	value.	Instead,	use
collect.	It	takes	three	arguments:	1.	A	supplier	to	make	new
instances	of	the	target	object,	for	example	a	constructor	for	a	hash	set
2.	An	accumulator	that	adds	an	element	to	the	target,	such	as	an	add
method

3.	A	combiner	that	merges	two	objects	into	one,	such	as	addAll
Here	is	how	the	collect	method	works	for	a	bit	set:

Click	here	to	view	code	image

BitSet	result	=	stream.collect(BitSet::new,	BitSet::set,

BitSet::or);

8.13	Primitive	Type	Streams
So	far,	we	have	collected	integers	in	a	Stream<Integer>,	even	though	it	is
clearly	inefficient	to	wrap	each	integer	into	a	wrapper	object.	The	same	is	true
for	the	other	primitive	types	double,	float,	long,	short,	char,	byte,
and	boolean.	The	stream	library	has	specialized	types	IntStream,
LongStream,	and	DoubleStream	that	store	primitive	values	directly,
without	using	wrappers.	If	you	want	to	store	short,	char,	byte,	and
boolean,	use	an	IntStream,	and	for	float,	use	a	DoubleStream.
To	create	an	IntStream,	call	the	IntStream.of	and	Arrays.stream
methods:
Click	here	to	view	code	image

IntStream	stream	=	IntStream.of(1,	1,	2,	3,	5);

stream	=	Arrays.stream(values,	from,	to);	//	values	is	an	int[]	array

As	with	object	streams,	you	can	also	use	the	static	generate	and	iterate
methods.	In	addition,	IntStream	and	LongStream	have	static	methods
range	and	rangeClosed	that	generate	integer	ranges	with	step	size	one:
Click	here	to	view	code	image
IntStream	zeroToNinetyNine	=	IntStream.range(0,	100);	//	Upper	bound

is	excluded

IntStream	zeroToHundred	=	IntStream.rangeClosed(0,	100);	//	Upper

bound	is	included

The	CharSequence	interface	has	methods	codePoints	and	chars	that
yield	an	IntStream	of	the	Unicode	codes	of	the	characters	or	of	the	code	units

in	the	UTF-16	encoding.	(See	Chapter	1	for	the	sordid	details.)	Click	here	to
view	code	image
String	sentence	=	"\uD835\uDD46	is	the	set	of	octonions.";

//	\uD835\uDD46	is	the	UTF-16	encoding	of	the	letter	 ,	unicode

U+1D546

IntStream	codes	=	sentence.codePoints();

//	The	stream	with	hex	values	1D546	20	69	73	20	...

When	you	have	a	stream	of	objects,	you	can	transform	it	to	a	primitive	type
stream	with	the	mapToInt,	mapToLong,	or	mapToDouble	methods.	For
example,	if	you	have	a	stream	of	strings	and	want	to	process	their	lengths	as
integers,	you	might	as	well	do	it	in	an	IntStream:	Click	here	to	view	code
image
Stream<String>	words	=	...;

IntStream	lengths	=	words.mapToInt(String::length);

To	convert	a	primitive	type	stream	to	an	object	stream,	use	the	boxed	method:
Click	here	to	view	code	image

Stream<Integer>	integers	=	IntStream.range(0,	100).boxed();

Generally,	the	methods	on	primitive	type	streams	are	analogous	to	those	on
object	streams.	Here	are	the	most	notable	differences:
•	The	toArray	methods	return	primitive	type	arrays.
•	Methods	that	yield	an	optional	result	return	an	OptionalInt,
OptionalLong,	or	OptionalDouble.	These	classes	are	analogous	to
the	Optional	class,	but	they	have	methods	getAsInt,	getAsLong,	and
getAsDouble	instead	of	the	get	method.
•	There	are	methods	sum,	average,	max,	and	min	that	return	the	sum,
average,	maximum,	and	minimum.	These	methods	are	not	defined	for	object
streams.
•	The	summaryStatistics	method	yields	an	object	of	type
IntSummaryStatistics,	LongSummaryStatistics,	or
DoubleSummaryStatistics	that	can	simultaneously	report	the	sum,
count,	average,	maximum,	and	minimum	of	the	stream.

	Note

The	Random	class	has	methods	ints,	longs,	and	doubles	that

return	primitive	type	streams	of	random	numbers.

8.14	Parallel	Streams
Streams	make	it	easy	to	parallelize	bulk	operations.	The	process	is	mostly
automatic,	but	you	need	to	follow	a	few	rules.	First	of	all,	you	must	have	a
parallel	stream.	You	can	get	a	parallel	stream	from	any	collection	with	the
Collection.parallelStream()	method:
Click	here	to	view	code	image

Stream<String>	parallelWords	=	words.parallelStream();

Moreover,	the	parallel	method	converts	any	sequential	stream	into	a	parallel
one.
Click	here	to	view	code	image

Stream<String>	parallelWords	=	Stream.of(wordArray).parallel();

As	long	as	the	stream	is	in	parallel	mode	when	the	terminal	method	executes,	all
intermediate	stream	operations	will	be	parallelized.
When	stream	operations	run	in	parallel,	the	intent	is	that	the	same	result	is
returned	as	if	they	had	run	serially.	It	is	important	that	the	operations	are
stateless	and	can	be	executed	in	an	arbitrary	order.
Here	is	an	example	of	something	you	cannot	do.	Suppose	you	want	to	count	all
short	words	in	a	stream	of	strings:
Click	here	to	view	code	image

int[]	shortWords	=	new	int[12];

words.parallelStream().forEach(

s	->	{	if	(s.length()	<	12)	shortWords[s.length()]++;	});

//	Error—race	condition!

System.out.println(Arrays.toString(shortWords));

This	is	very,	very	bad	code.	The	function	passed	to	forEach	runs	concurrently
in	multiple	threads,	each	updating	a	shared	array.	As	you	will	see	in	Chapter	10,
that's	a	classic	race	condition.	If	you	run	this	program	multiple	times,	you	are
quite	likely	to	get	a	different	sequence	of	counts	in	each	run—each	of	them
wrong.
It	is	your	responsibility	to	ensure	that	any	functions	you	pass	to	parallel	stream
operations	are	safe	to	execute	in	parallel.	The	best	way	to	do	that	is	to	stay	away
from	mutable	state.	In	this	example,	you	can	safely	parallelize	the	computation	if
you	group	strings	by	length	and	count	them.

Click	here	to	view	code	image

Map<Integer,	Long>	shortWordCounts

=	words.parallelStream()

.filter(s	->	s.length()	<	12)

.collect(groupingBy(

String::length,

counting()));

By	default,	streams	that	arise	from	ordered	collections	(arrays	and	lists),	from
ranges,	generators,	and	iterators,	or	from	calling	Stream.sorted,	are
ordered.	Results	are	accumulated	in	the	order	of	the	original	elements,	and	are
entirely	predictable.	If	you	run	the	same	operations	twice,	you	will	get	exactly
the	same	results.
Ordering	does	not	preclude	efficient	parallelization.	For	example,	when
computing	stream.map(fun),	the	stream	can	be	partitioned	into	n	segments,
each	of	which	is	concurrently	processed.	Then	the	results	are	reassembled	in
order.
Some	operations	can	be	more	effectively	parallelized	when	the	ordering
requirement	is	dropped.	By	calling	the	Stream.unordered	method,	you
indicate	that	you	are	not	interested	in	ordering.	One	operation	that	can	benefit
from	this	is	Stream.distinct.	On	an	ordered	stream,	distinct	retains
the	first	of	all	equal	elements.	That	impedes	parallelization—the	thread
processing	a	segment	can't	know	which	elements	to	discard	until	the	preceding
segment	has	been	processed.	If	it	is	acceptable	to	retain	any	of	the	unique
elements,	all	segments	can	be	processed	concurrently	(using	a	shared	set	to	track
duplicates).
You	can	also	speed	up	the	limit	method	by	dropping	ordering.	If	you	just	want
any	n	elements	from	a	stream	and	you	don’t	care	which	ones	you	get,	call	Click
here	to	view	code	image
Stream<String>	sample	=	words.parallelStream().unordered().limit(n);

As	discussed	in	Section	8.9,	“Collecting	into	Maps”	(page	273),	merging	maps	is
expensive.	For	that	reason,	the	Collectors.groupingByConcurrent
method	uses	a	shared	concurrent	map.	To	benefit	from	parallelism,	the	order	of
the	map	values	will	not	be	the	same	as	the	stream	order.
Click	here	to	view	code	image

Map<Integer,	List<String>>	result	=	words.parallelStream().collect(

Collectors.groupingByConcurrent(String::length));

//	Values	aren’t	collected	in	stream	order

Of	course,	you	won't	care	if	you	use	a	downstream	collector	that	is	independent
of	the	ordering,	such	as
Click	here	to	view	code	image

Map<Integer,	Long>	wordCounts

=	words.parallelStream()

.collect(

groupingByConcurrent(

String::length,

counting()));

	Note

Don't	turn	all	your	streams	into	parallel	streams	with	the	hope	of
speeding	up	their	operations.	There	is	a	substantial	overhead	to
parallelization	that	will	only	pay	off	for	very	large	data	sets.	Moreover,
the	thread	pool	that	is	used	by	parallel	streams	may	perform	poorly	for
blocking	operations	such	as	file	I/O	or	network	operations.	Parallel
streams	work	best	with	huge	in-memory	collections	of	data	and
computationally	intensive	processing.

	Caution

It	is	very	important	that	you	don't	modify	the	collection	that	is	backing	a
stream	while	carrying	out	a	stream	operation	(even	if	the	modification	is
threadsafe).	Remember	that	streams	don’t	collect	their	data—that	data	is
always	in	a	separate	collection.	If	you	were	to	modify	that	collection,	the
outcome	of	the	stream	operations	would	be	undefined.	The	JDK
documentation	refers	to	this	requirement	as	noninterference.	It	applies
both	to	sequential	and	parallel	streams.
To	be	exact,	since	intermediate	stream	operations	are	lazy,	it	is	possible
to	mutate	the	collection	up	to	the	point	when	the	terminal	operation
executes.	For	example,	the	following,	while	certainly	not	recommended,
will	work:	Click	here	to	view	code	image
List<String>	wordList	=	...;

Stream<String>	words	=	wordList.stream();

wordList.add("END");

long	n	=	words.distinct().count();

But	this	code	is	wrong:

