
Chapter	7.	Collections

Topics	in	This	Chapter
	7.1	An	Overview	of	the	Collections	Framework
	7.2	Iterators
	7.3	Sets
	7.4	Maps
	7.5	Other	Collections
	7.6	Views
	Exercises

Many	data	structures	have	been	developed	so	programmers	can	store	and
retrieve	values	efficiently.	The	Java	API	provides	implementations	of	common
data	structures	and	algorithms,	as	well	as	a	framework	to	organize	them.	In	this
chapter,	you	will	learn	how	to	work	with	lists,	sets,	maps,	and	other	collections.
The	key	points	of	this	chapter	are:
1.	The	Collection	interface	provides	common	methods	for	all	collections,
except	for	maps	which	are	described	by	the	Map	interface.

2.	A	list	is	a	sequential	collection	in	which	each	element	has	an	integer	index.
3.	A	set	is	optimized	for	efficient	containment	testing.	Java	provides	HashSet
and	TreeSet	implementations.

4.	For	maps,	you	have	the	choice	between	HashMap	and	TreeMap
implementations.	A	LinkedHashMap	retains	insertion	order.

5.	The	Collection	interface	and	Collections	class	provide	many	useful
algorithms:	set	operations,	searching,	sorting,	shuffling,	and	more.

6.	Views	provide	access	to	data	stored	elsewhere	using	the	standard	collection
interfaces.

7.1	An	Overview	of	the	Collections	Framework
The	Java	collections	framework	provides	implementations	of	common	data
structures.	To	make	it	easy	to	write	code	that	is	independent	of	the	choice	of	data
structures,	the	collections	framework	provides	a	number	of	common	interfaces,
shown	in	Figure	7-1.	The	fundamental	interface	is	Collection	whose

methods	are	shown	in	Table	7-1.

Figure	7-1	Interfaces	in	the	Java	collections	framework

Table	7-1	The	Methods	of	the	Collection<E>	Interface

Method Description
boolean	add(E	e)

boolean

addAll(Collection<?

extends	E>	c)

Adds	e,	or	the	elements	in	c.	Returns	true
if	the	collection	changed.

boolean	remove(Object	o)

boolean

removeAll(Collection<?>

c)

boolean

retainAll(Collection<?>

c)

boolean

removeIf(Predicate<?

super	E>	filter)

Removes	o,	or	the	elements	in	c,	or	the
elements	not	in	c,	or	matching	elements,	or
all	elements.	The	first	four	methods	return
true	if	the	collection	changed.

void	clear()

int	size()
Returns	the	number	of	elements	in	this
collection.

boolean	isEmpty()

boolean	contains(Object

o)

boolean

containsAll(Collection<?

>	c)

Returns	true	if	this	collection	is	empty,	or
contains	o,	or	contains	all	elements	in	c.

Iterator<E>	iterator()

Stream<E>	stream()

Stream<E>

parallelStream()

Spliterator<E>

spliterator()

Yields	an	iterator,	or	a	stream,	or	a	possibly
parallel	stream,	or	a	spliterator	for	visiting
the	elements	of	this	collection.	See	Section
7.2	for	iterators	and	Chapter	8	for	streams.
Spliterators	are	only	of	interest	to
implementors	of	streams.

Object[]	toArray()

T[]	toArray(T[]	a)

Returns	an	array	with	the	elements	of	this
collection.	The	second	method	returns	a	if	it
has	sufficient	length.

A	List	is	a	sequential	collection:	Elements	have	position	0,	1,	2,	and	so	on.
Table	7-2	shows	the	methods	of	that	interface.

Table	7-2	The	List	Interface

Method Description

boolean	add(int	index,	E	e)

boolean	addAll(int	index,

Collection<?	extends	E>	c)

boolean	add(E	e)

boolean	addAll(Collection<?

extends	E>	c)

Adds	e,	or	the	elements	in	c,	before
index	or	to	the	end.	Returns	true	if
the	list	changed.

E	get(int	index)

E	set(int	index,	E	element)

E	remove(int	index)

Gets,	sets,	or	removes	the	element	at
the	given	index.	The	last	two	methods
return	the	element	at	the	index	before
the	call.

int	indexOf(Object	o)

int	lastIndexOf(Object	o)

Returns	the	index	of	the	first	or	last
element	equal	to	o,	or	-1	if	there	is	no

match.
ListIterator<E>

listIterator()

ListIterator<E>

listIterator(int	index)

Yields	a	list	iterator	for	all	elements	or
the	elements	starting	at	index.

void

replaceAll(UnaryOperator<E>

operator)

Replaces	each	element	with	the	result
of	applying	the	operator	to	it.

void	sort(Comparator<?

super	E>	c)

Sorts	this	list,	using	the	ordering	given
by	c.

static	List<E>	of(E...

elements)

Yields	an	unmodifiable	list	containing
the	given	elements.

List<E>	subList(int

fromIndex,	int	toIndex)

Yields	a	view	(Section	7.6)	of	the
sublist	starting	at	fromIndex	and
ending	before	toIndex.

The	List	interface	is	implemented	both	by	the	ArrayList	class,	which	you
have	seen	throughout	this	book,	and	the	LinkedList	class.	If	you	took	a
course	on	data	structures,	you	probably	remember	a	linked	list—a	sequence	of
linked	nodes,	each	carrying	an	element.	Insertion	in	the	middle	of	a	linked	list	is
speedy—you	just	splice	in	a	node.	But	to	get	to	the	middle,	you	have	to	follow
all	the	links	from	the	beginning,	which	is	slow.	There	are	applications	for	linked
lists,	but	most	application	programmers	will	probably	stick	with	array	lists	when
they	need	a	sequential	collection.	Still,	the	List	interface	is	useful.	For
example,	the	method	Collections.nCopies(n,	o)	returns	a	List
object	with	n	copies	of	the	object	o.	That	object	“cheats”	in	that	it	doesn't
actually	store	n	copies	but,	when	you	ask	about	any	one	of	them,	returns	o.

	Caution

The	List	interface	provides	methods	to	access	the	nth	element	of	a	list,
even	though	such	an	access	may	not	be	efficient.	To	indicate	that	it	is,	a
collection	class	should	implement	the	RandomAccess	interface.	This
is	a	tagging	interface	without	methods.	For	example,	ArrayList
implements	List	and	RandomAccess,	but	LinkedList
implements	only	the	List	interface.

In	a	Set,	elements	are	not	inserted	at	a	particular	position,	and	duplicate
elements	are	not	allowed.	A	SortedSet	allows	iteration	in	sort	order,	and	a
NavigableSet	has	methods	for	finding	neighbors	of	elements.	You	will	learn
more	about	sets	in	Section	7.3,	“Sets”	(page	242).
A	Queue	retains	insertion	order,	but	you	can	only	insert	elements	at	the	tail	and
remove	them	from	the	head	(just	like	a	queue	of	people).	A	Deque	is	a	double-
ended	queue	with	insertion	and	removal	at	both	ends.
All	collection	interfaces	are	generic,	with	a	type	parameter	for	the	element	type
(Collection<E>,	List<E>,	and	so	on).	The	Map<K,	V>	interface	has	a
type	parameter	K	for	the	key	type	and	V	for	the	value	type.
You	are	encouraged	to	use	the	interfaces	as	much	as	possible	in	your	code.	For
example,	after	constructing	an	ArrayList,	store	the	reference	in	a	variable	of
type	List:
Click	here	to	view	code	image

List<String>	words	=	new	ArrayList<>();

Whenever	you	implement	a	method	that	processes	a	collection,	use	the	least
restrictive	interface	as	parameter	type.	Usually,	a	Collection,	List,	or	Map
will	suffice.
One	advantage	of	a	collections	framework	is	that	you	don't	have	to	reinvent	the
wheel	when	it	comes	to	common	algorithms.	Some	basic	algorithms	(such	as
addAll	and	removeIf)	are	methods	of	the	Collection	interface.	The
Collections	utility	class	contains	many	additional	algorithms	that	operate	on
various	kinds	of	collections.	You	can	sort,	shuffle,	rotate,	and	reverse	lists,	find
the	maximum	or	minimum,	or	the	position	of	an	arbitrary	element	in	a
collection,	and	generate	collections	with	no	elements,	one	element,	or	n	copies
of	the	same	element.	Table	7-3	provides	a	summary.

Table	7-3	Useful	Methods	of	the	Collections	Class

Method	(all	are	static) Description

boolean	disjoint(Collection<?>	c1,

Collection<?>	c2)

Returns	true	if	the
collections	have	no
elements	in	common.

boolean	addAll(Collection<?	super Adds	all	elements	to	c.

T>	c,	T...	elements)

void	copy(List<?	super	T>	dest,

List<?	extends	T>	src)

Copies	all	elements	from
src	to	the	same	indexes	in
dest	(which	must	be	at
least	as	long	as	src).

boolean	replaceAll(List<T>	list,	T

oldVal,	T	newVal)

Replaces	all	oldVal
elements	with	newVal,
either	of	which	may	be
null.	Returns	true	if	at
least	one	match	was	found.

void	fill(List<?	super	T>	list,	T

obj)

Sets	all	elements	of	the	list
to	obj.

List<T>	nCopies(int	n,	T	o)
Yields	an	immutable	list
with	n	copies	of	o.

int	frequency(Collection<?>	c,

Object	o)

Returns	the	number	of
elements	in	c	equal	to	o.

int	indexOfSubList(List<?>	source,

List<?>	target)	
int	lastIndexOfSubList(List<?>

source,	List<?>	target)

Returns	the	start	of	the	first
or	last	occurrence	of	the
target	list	within	the	source
list,	or	-1	if	there	is	none.

int	binarySearch(List<?	extends

Comparable<?	super	T>>	list,	T	key)

int	binarySearch(List<?	extends	T>	list,	T

key,

Comparator<?	super	T>	c)

Returns	the	position	of	the
key,	assuming	that	the	list	is
sorted	by	the	natural
element	order	or	c.	If	the
key	is	not	present,	returns	-
i	-	1	where	i	is	the
location	at	which	the	key
should	be	inserted.

sort(List<T>	list)

sort(List<T>	list,	Comparator<?

super	T>	c)

Sorts	the	list,	using	the
natural	element	order	or	c.

void	swap(List<?>	list,	int	i,	int

j)

Swaps	the	elements	at	the
given	position.

Rotates	the	list,	moving	the

void	rotate(List<?>	list,	int

distance)

element	with	index	i	to	(i
+	distance)	%

list.size().
void	reverse(List<?>	list)

void	shuffle(List<?>	list)

void	shuffle(List<?>	list,	Random

rnd)

Reverses	or	randomly
shuffles	the	list.

synchronized(Collection|List|Set|SortedSet|
NavigableSet|Map|SortedMap|NavigableMap)()

Yields	a	synchronized	view
(see	Section	7.6).

unmodifiable(Collection|List|Set|SortedSet|
NavigableSet|Map|SortedMap|NavigableMap)()

Yields	an	unmodifiable
view	(see	Section	7.6).

checked(Collection|List|Set|SortedSet|
NavigableSet|Map|SortedMap|NavigableMap|Queue)()

Yields	a	checked	view	(see
Section	7.6).

7.2	Iterators
Each	collection	provides	a	way	to	iterate	through	its	elements	in	some	order.	The
Iterable<T>	superinterface	of	Collection	defines	a	method
Iterator<T>	iterator()

It	yields	an	iterator	that	you	can	use	to	visit	all	elements.
Click	here	to	view	code	image

Collection<String>	coll	=	...;

Iterator<String>	iter	=	coll.iterator();

while	(iter.hasNext())	{

String	element	=	iter.next();

Process	element
}

In	this	case,	you	can	simply	use	the	enhanced	for	loop:
for	(String	element	:	coll)	{

Process	element
}

	Note

For	any	object	c	of	a	class	that	implements	the	Iterable<E>

interface,	the	enhanced	for	loop	is	translated	to	the	preceding	form.

The	Iterator	interface	also	has	a	remove	method	which	removes	the
previously	visited	element.	This	loop	removes	all	elements	that	fulfill	a
condition:
Click	here	to	view	code	image

while	(iter.hasNext())	{

String	element	=	iter.next();

if	(element	fulfills	the	condition)
iter.remove();

}

However,	it	is	easier	to	use	the	removeIf	method:
Click	here	to	view	code	image

coll.removeIf(e	->	e	fulfills	the	condition);

	Caution

The	remove	method	removes	the	last	element	that	the	iterator	has
returned,	not	the	element	to	which	the	iterator	points.	You	can't	call
remove	twice	without	an	intervening	call	to	next	or	previous.

The	ListIterator	interface	is	a	subinterface	of	Iterator	with	methods
for	adding	an	element	before	the	iterator,	setting	the	visited	element	to	a	different
value,	and	for	navigating	backwards.	It	is	mainly	useful	for	working	with	linked
lists.
Click	here	to	view	code	image

List<String>	friends	=	new	LinkedList<>();

ListIterator<String>	iter	=	friends.listIterator();

iter.add("Fred");	//	Fred	|

iter.add("Wilma");	//	Fred	Wilma	|

iter.previous();	//	Fred	|	Wilma

iter.set("Barney");	//	Fred	|	Barney

	Caution

If	you	have	multiple	iterators	visiting	a	data	structure	and	one	of	them
mutates	it,	the	other	ones	can	become	invalid.	An	invalid	iterator	may
throw	a	ConcurrentModificationException	if	you	continue

using	it.

7.3	Sets
A	set	can	efficiently	test	whether	a	value	is	an	element,	but	it	gives	up	something
in	return:	It	doesn't	remember	in	which	order	elements	were	added.	Sets	are
useful	whenever	the	order	doesn't	matter.	For	example,	if	you	want	to	disallow	a
set	of	bad	words	as	usernames,	their	order	doesn't	matter.	You	just	want	to	know
whether	a	proposed	username	is	in	the	set	or	not.
The	Set	interface	is	implemented	by	the	HashSet	and	TreeSet	classes.
Internally,	these	classes	use	very	different	implementations.	If	you	have	taken	a
course	in	data	structures,	you	may	know	how	to	implement	hash	tables	and
binary	trees—but	you	can	use	these	classes	without	knowing	their	internals.
Generally,	hash	sets	are	a	bit	more	efficient,	provided	you	have	a	good	hash
function	for	your	elements.	Library	classes	such	as	String	or	Path	have	good
hash	functions.	You	learned	how	to	write	hash	function	for	your	own	classes	in
Chapter	4.
For	example,	that	set	of	bad	words	can	be	implemented	simply	as
Click	here	to	view	code	image

Set<String>	badWords	=	new	HashSet<>();

badWords.add("sex");

badWords.add("drugs");

badWords.add("c++");

if	(badWords.contains(username.toLowerCase()))

System.out.println("Please	choose	a	different	user	name");

You	use	a	TreeSet	if	you	want	to	traverse	the	set	in	sorted	order.	One	reason
you	might	want	to	do	this	is	to	present	users	a	sorted	list	of	choices.
The	element	type	of	the	set	must	implement	the	Comparable	interface,	or	you
need	to	supply	a	Comparator	in	the	constructor.
Click	here	to	view	code	image

TreeSet<String>	countries	=	new	TreeSet<>();	//	Visits	added	countries	in	sorted
order
countries	=	new	TreeSet<>((u,	v)	->

u.equals(v)	?	0

:	u.equals("USA")	?	-1

:	v.equals("USA")	?	1

:	u.compareTo(v));

//	USA	always	comes	first

The	TreeSet	class	implements	the	SortedSet	and	NavigableSet

interfaces,	whose	methods	are	shown	in	Tables	7-4	and	7-5.

Table	7-4	SortedSet<E>	Methods

Method Description
E	first()

E	last()
The	first	and	last	element	in	this	set.

SortedSet<E>	headSet(E

toElement)

SortedSet<E>	subSet(E

fromElement,	E

toElement)

SortedSet<E>	tailSet(E

fromElement)

Returns	a	view	of	the	elements	starting	at
fromElement	and	ending	before
toElement.

Table	7-5	NavigableSet<E>	Methods

Method Description
E	higher(E	e)	
E	ceiling(E	e)	
E	floor(E	e)	
E	lower(E	e)

Returns	the	closest	element	>|≥|≤|<	e.

E	pollFirst()

E	pollLast()

Removes	and	returns	the	first	or	last	element,
or	returns	null	if	the	set	is	empty.

NavigableSet<E>	headSet(E

toElement,	boolean

inclusive)

NavigableSet<E>	subSet(E

fromElement,	boolean

fromInclusive,

E	toElement,	boolean

toExclusive)

NavigableSet<E>	tailSet(E

fromElement,	boolean

inclusive)

Returns	a	view	of	the	elements	from
fromElement	to	toElement	(inclusive	or
exclusive).

7.4	Maps
Maps	store	associations	between	keys	and	values.	Call	put	to	add	a	new
association,	or	change	the	value	of	an	existing	key:

Click	here	to	view	code	image

Map<String,	Integer>	counts	=	new	HashMap<>();

counts.put("Alice",	1);	//	Adds	the	key/value	pair	to	the	map
counts.put("Alice",	2);	//	Updates	the	value	for	the	key

This	example	uses	a	hash	map	which,	as	for	sets,	is	usually	the	better	choice	if
you	don't	need	to	visit	the	keys	in	sorted	order.	If	you	do,	use	a	TreeMap
instead.
Here	is	how	you	can	get	the	value	associated	with	a	key:
Click	here	to	view	code	image

int	count	=	counts.get("Alice");

If	the	key	isn't	present,	the	get	method	returns	null.	In	this	example,	that
would	cause	a	NullPointerException	when	the	value	is	unboxed.	A
better	alternative	is
Click	here	to	view	code	image

int	count	=	counts.getOrDefault("Alice",	0);

Then	a	count	of	0	is	returned	if	the	key	isn't	present.
When	you	update	a	counter	in	a	map,	you	first	need	to	check	whether	the	counter
is	present,	and	if	so,	add	1	to	the	existing	value.	The	merge	method	simplifies
that	common	operation.	The	call
Click	here	to	view	code	image

counts.merge(word,	1,	Integer::sum);

associates	word	with	1	if	the	key	wasn't	previously	present,	and	otherwise
combines	the	previous	value	and	1,	using	the	Integer::sum	function.
Table	7-6	summarizes	the	map	operations.

Table	7-6	Map<K,	V>	Methods

Method Description

V	get(Object	key)

V	getOrDefault(Object

key,

V	defaultValue)

If	key	is	associated	with	a	non-null	value	v,
returns	v.	Otherwise,	returns	null	or
defaultValue.

V	put(K	key,	V

value)

If	key	is	associated	with	a	non-null	value	v,
associates	key	with	value	and	returns	v.

Otherwise,	adds	entry	and	returns	null.

V	putIfAbsent(K	key,

V	value)

If	key	is	associated	with	a	non-null	value	v,
ignores	value	and	returns	v.	Otherwise,	adds
entry	and	returns	null.

V	merge(K	key,	V	value,

BiFunction<

?	super	V,?	super	V,?

extends	V>

remappingFunction)

If	key	is	associated	with	a	non-null	value	v,
applies	the	function	to	v	and	value	and	either
associates	key	with	the	result	or,	if	the	result	is
null,	removes	the	key.	Otherwise,	associates
key	with	value.	Returns	get(key).

V	compute(K	key,

BiFunction<

?	super	K,?	super	V,?

extends	V>

remappingFunction)

Applies	the	function	to	key	and	get(key).
Either	associates	key	with	the	result	or,	if	the
result	is	null,	removes	the	key.	Returns
get(key).

V	computeIfPresent(K	key,

BiFunction<

?	super	K,?	super	V,?

extends	V>

remappingFunction)

If	key	is	associated	with	a	non-null	value	v,
applies	the	function	to	key	and	v	and	either
associates	key	with	the	result	or,	if	the	result	is
null,	removes	the	key.	Returns	get(key).

V	computeIfAbsent(K	key,

Function<

?	super	K,?	extends	V>

mappingFunction)

Applies	the	function	to	key	unless	key	is
associated	with	a	non-null	value.	Either
associates	key	with	the	result	or,	if	the	result	is
null,	removes	the	key.	Returns	get(key).

void	putAll(Map<?	extends

K,

?	extends	V>	m)
Adds	all	entries	from	m.

V	remove(Object	key)

V	replace(K	key,	V

newValue)

Removes	the	key	and	its	associated	value,	or
replaces	the	old	value.	Returns	the	old	value,	or
null	if	none	existed.

boolean	remove(Object

key,

Object	value)

boolean	replace(K	key,	V

value,

V	newValue)

Provided	that	key	was	associated	with	value,
removes	the	entry	or	replaces	the	old	value	and
returns	true.	Otherwise,	does	nothing	and
returns	false.	These	methods	are	mainly	of
interest	when	the	map	is	accessed	concurrently.

int	size() Returns	the	number	of	entries.

boolean	isEmpty() Checks	if	this	map	is	empty.
void	clear() Removes	all	entries.

void	forEach(BiConsumer<?

super	K,

?	super	V>	action)
Applies	the	action	to	all	entries.

void

replaceAll(BiFunction<?

super	K,

?	super	V,?	extends	V>

function)

Calls	the	function	on	all	entries.	Associates	keys
with	non-null	results	and	removes	keys	with
null	results.

boolean

containsKey(Object

key)

boolean

containsValue(Object

value)

Checks	whether	the	map	contains	the	given	key	or
value.

Set<K>	keySet()

Collection<V>

values()

Set<Map.Entry<K,	V>>

entrySet()

Returns	views	of	the	keys,	values,	and	entries.

static	Map<K,	V>	of()

static	Map<K,	V>	of(K	k1,

V	v1)

static	Map<K,	V>	of(K	k1,

V	v1,

K	k2,	V	v2)

...

Yields	an	unmodifiable	map	containing	up	to	ten
keys	and	values.

You	can	get	views	of	the	keys,	values,	and	entries	of	a	map	by	calling	these
methods:
Set<K>	keySet()

Set<Map.Entry<K,	V>>	entrySet()

Collection<V>	values()

The	collections	that	are	returned	are	not	copies	of	the	map	data,	but	they	are
connected	to	the	map.	If	you	remove	a	key	or	entry	from	the	view,	then	the	entry
is	also	removed	from	the	underlying	map.

To	iterate	through	all	keys	and	values	of	a	map,	you	can	iterate	over	the	set
returned	by	the	entrySet	method:
Click	here	to	view	code	image

for	(Map.Entry<String,	Integer>	entry	:	counts.entrySet())	{

String	k	=	entry.getKey();

Integer	v	=	entry.getValue();

Process	k,	v
}

Or	simply	use	the	forEach	method:
counts.forEach((k,	v)	->	{

Process	k,	v
});

	Caution

Some	map	implementations	(for	example,	ConcurrentHashMap)
disallow	null	for	keys	or	values.	And	with	those	that	allow	it	(such	as
HashMap),	you	need	to	be	very	careful	if	you	do	use	null	values.	A
number	of	map	methods	interpret	a	null	value	as	an	indication	that	an
entry	is	absent,	or	should	be	removed.

	Tip

Sometimes,	you	need	to	present	map	keys	in	an	order	that	is	different
from	the	sort	order.	For	example,	in	the	JavaServer	Faces	framework,
you	specify	labels	and	values	of	a	selection	box	with	a	map.	Users
would	be	surprised	if	the	choices	were	sorted	alphabetically	(Friday,
Monday,	Saturday,	Sunday,	Thursday,	Tuesday,	Wednesday)	or	in	the
hash	code	order.	In	that	case,	use	a	LinkedHashMap	that	remembers
the	order	in	which	entries	were	added	and	iterates	through	them	in	that
order.

7.5	Other	Collections
In	the	following	sections,	I	briefly	discuss	some	collection	classes	that	you	may
find	useful	in	practice.

7.5.1	Properties
The	Properties	class	implements	a	map	that	can	be	easily	saved	and	loaded
using	a	plain	text	format.	Such	maps	are	commonly	used	for	storing
configuration	options	for	programs.	For	example:
Click	here	to	view	code	image

Properties	settings	=	new	Properties();

settings.put("width",	"200");

settings.put("title",	"Hello,	World!");

try	(OutputStream	out	=	Files.newOutputStream(path))	{

settings.store(out,	"Program	Properties");

}

The	result	is	the	following	file:
#Program	Properties

#Mon	Nov	03	20:52:33	CET	2014

width=200

title=Hello,	World\!

	Note

As	of	Java	9,	property	files	are	encoded	in	UTF-8.	(Previously,	they
were	encoded	in	ASCII,	with	characters	greater	than	'\u007e'	written
as	Unicode	escapes	\unnnn.)	Comments	start	with	#	or	!.	A	newline	in
a	key	or	value	is	written	as	\n.	The	characters	\,	#,	!	are	escaped	as
\\,	\#,	\!.

To	load	properties	from	a	file,	call
Click	here	to	view	code	image

try	(InputStream	in	=	Files.newInputStream(path))	{

settings.load(in);

}

Then	use	the	getProperty	method	to	get	a	value	for	a	key.	You	can	specify	a
default	value	used	when	the	key	isn't	present:
Click	here	to	view	code	image

String	title	=	settings.getProperty("title",	"New	Document");

	Note

For	historical	reasons,	the	Properties	class	implements
Map<Object,	Object>	even	though	the	values	are	always	strings.
Therefore,	don't	use	the	get	method—it	returns	the	value	as	an
Object.

The	System.getProperties	method	yields	a	Properties	object	with
system	properties.	Table	7-7	describes	the	most	useful	ones.

Table	7-7	Useful	System	Properties

Property	Key Description
user.dir The	“current	working	directory”	of	this	virtual	machine
user.home The	user's	home	directory
user.name The	user's	account	name
java.version The	Java	runtime	version	of	this	virtual	machine
java.home The	home	directory	of	the	Java	installation
java.class.pathThe	class	path	with	which	this	VM	was	launched
java.io.tmpdir A	directory	suitable	for	temporary	files	(such	as	/tmp)
os.name The	name	of	the	operating	system	(such	as	Linux)
os.arch The	architecture	of	the	operating	system	(such	as	amd64)

os.version
The	version	of	the	operating	system	(such	as	3.13.0-
34-generic)

file.separator The	file	separator	(/	on	Unix,	\	on	Windows)
path.separator The	path	separator	(:	on	Unix,	;	on	Windows)
line.separator The	newline	separator	(\n	on	Unix,	\r\n	on	Windows)

7.5.2	Bit	Sets
The	BitSet	class	stores	a	sequence	of	bits.	A	bit	set	packs	bits	into	an	array	of
long	values,	so	it	is	more	efficient	to	use	a	bit	set	than	an	array	of	boolean
values.	Bit	sets	are	useful	for	sequences	of	flag	bits	or	to	represent	sets	of	non-
negative	integers,	where	the	ith	bit	is	1	to	indicate	that	i	is	contained	in	the	set.
The	BitSet	class	gives	you	convenient	methods	for	getting	and	setting
individual	bits.	This	is	much	simpler	than	the	bit-fiddling	necessary	to	store	bits

in	int	or	long	variables.	There	are	also	methods	that	operate	on	all	bits
together	for	set	operations,	such	as	union	and	intersection.	See	Table	7-8	for	a
complete	list.	Note	that	the	BitSet	class	is	not	a	collection	class—it	does	not
implement	Collection<Integer>.

Table	7-8	Methods	of	the	BitSet	Class

Method Description
BitSet()

BitSet(int	nbits)

Constructs	a	bit	set	that	can	initially	hold	64,	or
nbits,	bits.

void	set(int	bitIndex)

void	set(int	fromIndex,

int	toIndex)

void	set(int	bitIndex,

boolean	value)

void	set(int	fromIndex,

int	toIndex,

boolean	value)

Sets	the	bit	at	the	given	index,	or	from
fromIndex	(inclusive)	to	toIndex
(exclusive),	to	1	or	to	the	given	value.

void	clear(int

bitIndex)

void	clear(int

fromIndex,	int

toIndex)

void	clear()

Sets	the	bit	at	the	given	index,	or	from
fromIndex	(inclusive)	to	toIndex
(exclusive),	or	all	bits	to	0.

void	flip(int

bitIndex)

void	flip(int

fromIndex,	int

toIndex)

Flips	the	bit	at	the	given	index,	or	from
fromIndex	(inclusive)	to	toIndex
(exclusive).

boolean	get(int

bitIndex)

BitSet	get(int

fromIndex,	int

toIndex)

Gets	the	bit	at	the	given	index,	or	from
fromIndex	(inclusive)	to	toIndex
(exclusive).

int	nextSetBit(int

fromIndex)	
int

previousSetBit(int

fromIndex)	
int	nextClearBit(int

fromIndex)	
int

previousClearBit(int

fromIndex)

Returns	the	index	of	the	next/previous	1/0	bit,	or
-1	if	none	exists.

void	and(BitSet	set)

void	andNot(BitSet

set)

void	or(BitSet	set)

void	xor(BitSet	set)

Forms	the	intersection|difference|union|symmetric
difference	with	set.

int	cardinality()

Returns	the	number	of	1	bits	in	this	bit	set.
Caution:	The	size	method	returns	the	current
size	of	the	bit	vector,	not	the	size	of	the	set.

byte[]	toByteArray[]

long[]	toLongArray[]
Packs	the	bits	of	this	bit	set	into	an	array.

IntStream	stream()	

String	toString()

Returns	a	stream	or	string	of	the	integers	(that	is,
indexes	of	1	bits)	in	this	bit	set.

static	BitSet

valueOf(byte[]

bytes)

static	BitSet

valueOf(long[]

longs)

static	BitSet

valueOf(ByteBuffer

bb)

static	BitSet

valueOf(LongBuffer

lb)

Yields	a	bit	set	containing	the	supplied	bits.

boolean	isEmpty()	
boolean

intersects(BitSet

set)

Checks	whether	this	bit	set	is	empty,	or	has	an
element	in	common	with	set.

7.5.3	Enumeration	Sets	and	Maps

If	you	collect	sets	of	enumerated	values,	use	the	EnumSet	class	instead	of
BitSet.	The	EnumSet	class	has	no	public	constructors.	Use	a	static	factory
method	to	construct	the	set:
Click	here	to	view	code	image

enum	Weekday	{	MONDAY,	TUESDAY,	WEDNESDAY,	THURSDAY,	FRIDAY,	SATURDAY,

SUNDAY	};

Set<Weekday>	always	=	EnumSet.allOf(Weekday.class);

Set<Weekday>	never	=	EnumSet.noneOf(Weekday.class);

Set<Weekday>	workday	=	EnumSet.range(Weekday.MONDAY,	Weekday.FRIDAY);

Set<Weekday>	mwf	=	EnumSet.of(Weekday.MONDAY,	Weekday.WEDNESDAY,

Weekday.FRIDAY);

You	can	use	the	methods	of	the	Set	interface	to	work	with	an	EnumSet.
An	EnumMap	is	a	map	with	keys	that	belong	to	an	enumerated	type.	It	is
implemented	as	an	array	of	values.	You	specify	the	key	type	in	the	constructor:
Click	here	to	view	code	image

EnumMap<Weekday,	String>	personInCharge	=	new	EnumMap<>

(Weekday.class);

personInCharge.put(Weekday.MONDAY,	"Fred");

7.5.4	Stacks,	Queues,	Deques,	and	Priority	Queues
A	stack	is	a	data	structure	for	adding	and	removing	elements	at	one	end	(the
“top”	of	the	stack).	A	queue	lets	you	efficiently	add	elements	at	one	end	(the
“tail”)	and	remove	them	from	the	other	end	(the	“head”).	A	double-ended	queue,
or	deque,	supports	insertion	and	removal	at	both	ends.	With	all	these	data
structures,	adding	elements	in	the	middle	is	not	supported.
The	Queue	and	Deque	interfaces	define	the	methods	for	these	data	structures.
There	is	no	Stack	interface	in	the	Java	collections	framework,	just	a	legacy
Stack	class	from	the	earliest	days	of	Java	that	you	should	avoid.	If	you	need	a
stack,	queue,	or	deque	and	are	not	concerned	about	thread	safety,	use	an
ArrayDeque.
With	a	stack,	use	the	push	and	pop	methods.
Click	here	to	view	code	image

ArrayDeque<String>	stack	=	new	ArrayDeque<>();

stack.push("Peter");

stack.push("Paul");

stack.push("Mary");

while	(!stack.isEmpty())

System.out.println(stack.pop());

With	a	queue,	use	add	and	remove.
Click	here	to	view	code	image

Queue<String>	queue	=	new	ArrayDeque<>();

queue.add("Peter");

queue.add("Paul");

queue.add("Mary");

while	(!queue.isEmpty())

System.out.println(queue.remove());

Threadsafe	queues	are	commonly	used	in	concurrent	programs.	You	will	find
more	information	about	them	in	Chapter	10.
A	priority	queue	retrieves	elements	in	sorted	order	after	they	were	inserted	in
arbitrary	order.	That	is,	whenever	you	call	the	remove	method,	you	get	the
smallest	element	currently	in	the	priority	queue.
A	typical	use	for	a	priority	queue	is	job	scheduling.	Each	job	has	a	priority.	Jobs
are	added	in	random	order.	Whenever	a	new	job	can	be	started,	the	highest
priority	job	is	removed	from	the	queue.	(Since	it	is	traditional	for	priority	1	to	be
the	“highest”	priority,	the	remove	operation	yields	the	minimum	element.)
Click	here	to	view	code	image

public	class	Job	implements	Comparable<Job>	{	...	}

...

PriorityQueue<Job>	jobs	=	new	PriorityQueue<>();

jobs.add(new	Job(4,	"Collect	garbage"));

jobs.add(new	Job(9,	"Match	braces"));

jobs.add(new	Job(1,	"Fix	memory	leak"));

...

while	(jobs.size()	>	0)	{

Job	job	=	jobs.remove();	//	The	most	urgent	jobs	are	removed	first
execute(job);

}

Just	like	a	TreeSet,	a	priority	queue	can	hold	elements	of	a	class	that
implements	the	Comparable	interface,	or	you	can	supply	a	Comparator	in
the	constructor.	However,	unlike	a	TreeSet,	iterating	over	the	elements	does
not	necessarily	yield	them	in	sorted	order.	The	priority	queue	uses	algorithms	for
adding	and	removing	elements	that	cause	the	smallest	element	to	gravitate	to	the
root,	without	wasting	time	on	sorting	all	elements.

7.5.5	Weak	Hash	Maps
The	WeakHashMap	class	was	designed	to	solve	an	interesting	problem.	What
happens	with	a	value	whose	key	is	no	longer	used	anywhere	in	your	program?	If

the	last	reference	to	a	key	has	gone	away,	there	is	no	longer	any	way	to	refer	to
the	value	object	so	it	should	be	removed	by	the	garbage	collector.
It	isn’t	quite	so	simple.	The	garbage	collector	traces	live	objects.	As	long	as	the
map	object	is	live,	all	entries	in	it	are	live	and	won’t	be	reclaimed—and	neither
will	be	the	values	that	are	referenced	by	the	entries.
This	is	the	problem	that	the	WeakHashMap	class	solves.	This	data	structure
cooperates	with	the	garbage	collector	to	remove	key/value	pairs	when	the	only
reference	to	the	key	is	the	one	from	the	hash	table	entry.
Technically,	the	WeakHashMap	uses	weak	references	to	hold	keys.	A
WeakReference	object	holds	a	reference	to	another	object—in	our	case,	a
hash	table	key.	Objects	of	this	type	are	treated	in	a	special	way	by	the	garbage
collector.	If	an	object	is	reachable	only	by	a	weak	reference,	the	garbage
collector	reclaims	the	object	and	places	the	weak	reference	into	a	queue
associated	with	the	WeakReference	object.	Whenever	a	method	is	invoked
on	it,	a	WeakHashMap	checks	its	queue	of	weak	references	for	new	arrivals	and
removes	the	associated	entries.

7.6	Views
A	collection	view	is	a	lightweight	object	that	implements	a	collection	interface,
but	doesn't	store	elements.	For	example,	the	keySet	and	values	methods	of	a
map	yield	views	into	the	map.
In	the	following	sections,	you	will	see	some	views	that	are	provided	by	the	Java
collections	framework.

7.6.1	Small	Collections
The	List,	Set,	and	Map	interfaces	provide	static	methods	yielding	a	set	or	list
with	given	elements,	and	a	map	with	given	key/value	pairs.
For	example,
Click	here	to	view	code	image

List<String>	names	=	List.of("Peter",	"Paul",	"Mary");

Set<Integer>	numbers	=	Set.of(2,	3,	5);

yield	a	list	and	a	set	with	three	elements.	For	a	map,	specify	the	keys	and	values
like	this:
Click	here	to	view	code	image

Map<String,	Integer>	scores	=	Map.of("Peter",	2,	"Paul",	3,	"Mary",

5);

The	elements,	keys,	or	values	may	not	be	null.
The	List	and	Set	interfaces	have	11	of	methods	with	zero	to	ten	arguments,
and	an	of	method	with	a	variable	number	of	arguments.	The	specializations	are
provided	for	efficiency.
For	the	Map	interface,	it	is	not	possible	to	provide	a	version	with	variable
arguments	since	the	argument	types	alternate	between	the	key	and	value	types.
There	is	a	static	method	ofEntries	that	accepts	an	arbitrary	number	of
Map.Entry<K,	V>	objects,	which	you	can	create	with	the	static	entry
method.	For	example,
Click	here	to	view	code	image

import	static	java.util.Map.*;

...

Map<String,	Integer>	scores	=	ofEntries(

entry("Peter",	2),

entry("Paul",	3),

entry("Mary",	5));

The	of	and	ofEntries	methods	produce	objects	of	classes	that	have	an
instance	variable	for	each	element,	or	that	are	backed	by	an	array.
These	collection	objects	are	unmodifiable.	Any	attempt	to	change	their	contents
results	in	an	UnsupportedOperationException.
If	you	want	a	mutable	collection,	you	can	pass	the	unmodifiable	collection	to	the
constructor:
Click	here	to	view	code	image

List<String>	names	=	new	ArrayList<>(List.of("Peter",	"Paul",

"Mary"));

	Note

There	is	also	a	static	Arrays.asList	method	that	is	similar	to
List.of.	It	returns	a	mutable	list	that	is	not	resizable.	That	is,	you	can
call	set	but	not	add	or	remove	on	the	list.

7.6.2	Ranges
You	can	form	a	sublist	view	of	a	list.	For	example,
Click	here	to	view	code	image

List<String>	sentence	=	...;

List<String>	nextFive	=	sentence.subList(5,	10);

This	view	accesses	the	elements	with	index	5	through	9.	Any	mutations	of	the
sublist	(such	as	setting,	adding,	or	removing	elements)	affect	the	original.
For	sorted	sets	and	maps,	you	specify	a	range	by	the	lower	and	upper	bound:
Click	here	to	view	code	image

TreeSet<String>	words	=	...;

SortedSet<String>	asOnly	=	words.subSet("a",	"b");

As	with	subList,	the	first	bound	is	inclusive,	and	the	second	exclusive.
The	headSet	and	tailSet	methods	yield	a	subrange	with	no	lower	or	upper
bound.
Click	here	to	view	code	image

NavigableSet<String>	nAndBeyond	=	words.tailSet("n");

With	the	NavigableSet	interface,	you	can	choose	for	each	bound	whether	it
should	be	inclusive	or	exclusive—see	Table	7-5.
For	a	sorted	map,	there	are	equivalent	methods	subMap,	headMap,	and
tailMap.

7.6.3	Unmodifiable	Views
Sometimes,	you	want	to	share	the	contents	of	a	collection	but	you	don't	want	it
to	be	modified.	Of	course,	you	could	copy	the	values	into	a	new	collection,	but
that	is	potentially	expensive.	An	unmodifiable	view	is	a	better	choice.	Here	is	a
typical	situation.	A	Person	object	maintains	a	list	of	friends.	If	the
getFriends	gave	out	a	reference	to	that	list,	a	caller	could	mutate	it.	But	it	is
safe	to	provide	an	unmodifiable	list	view:
Click	here	to	view	code	image

public	class	Person	{

private	ArrayList<Person>	friends;

public	List<Person>	getFriends()	{

return	Collections.unmodifiableList(friends);

}

...

}

All	mutator	methods	throw	an	exception	when	they	are	invoked	on	an
unmodifiable	view.
As	you	can	see	from	Table	7-3,	you	can	get	unmodifiable	views	as	collections,

lists,	sets,	sorted	sets,	navigable	sets,	maps,	sorted	maps,	and	navigable	maps.

	Note

In	Chapter	6,	you	saw	how	it	is	possible	to	smuggle	the	wrong	kind	of
elements	into	a	generic	collection	(a	phenomenon	called	“heap
pollution”),	and	that	a	runtime	error	is	reported	when	the	inappropriate
element	is	retrieved,	not	when	it	is	inserted.	If	you	need	to	debug	such	a
problem,	use	a	checked	view.	Where	you	constructed,	say,	an
ArrayList<String>,	instead	use

Click	here	to	view	code	image

List<String>	strings

=	Collections.checkedList(new	ArrayList<>(),	String.class);

The	view	monitors	all	insertions	into	the	list	and	throws	an	exception
when	an	object	of	the	wrong	type	is	added.

	Note

The	Collections	class	produces	synchronized	views	that	ensure	safe
concurrent	access	to	data	structures.	In	practice,	these	views	are	not	as
useful	as	the	data	structures	in	the	java.util.concurrent
package	that	were	explicitly	designed	for	concurrent	access.	I	suggest
you	use	those	classes	and	stay	away	from	synchronized	views.

Exercises
1.	Implement	the	“Sieve	of	Erathostenes”	algorithm	to	determine	all	prime
numbers	≤	n.	Add	all	numbers	from	2	to	n	to	a	set.	Then	repeatedly	find	the
smallest	element	s	in	the	set,	and	remove	s2,	s	·	(s	+	1),	s	·	(s	+	2),	and	so	on.
You	are	done	when	s2	>	n.	Do	this	with	both	a	HashSet<Integer>	and	a
BitSet.

2.	In	an	array	list	of	strings,	make	each	string	uppercase.	Do	this	with	(a)	an
iterator,	(b)	a	loop	over	the	index	values,	and	(c)	the	replaceAll	method.

3.	How	do	you	compute	the	union,	intersection,	and	difference	of	two	sets,	using
just	the	methods	of	the	Set	interface	and	without	using	loops?

4.	Produce	a	situation	that	yields	a

