
Chapter	3.	Interfaces	and	Lambda	Expressions

Topics	in	This	Chapter
	3.1	Interfaces
	3.2	Static,	Default,	and	Private	Methods
	3.3	Examples	of	Interfaces
	3.4	Lambda	Expressions
	3.5	Method	and	Constructor	References
	3.6	Processing	Lambda	Expressions
	3.7	Lambda	Expressions	and	Variable	Scope
	3.8	Higher-Order	Functions
	3.9	Local	and	Anonymous	Classes
	Exercises

Java	was	designed	as	an	object-oriented	programming	language	in	the	1990s
when	object-oriented	programming	was	the	principal	paradigm	for	software
development.	Interfaces	are	a	key	feature	of	object-oriented	programming:	They
let	you	specify	what	should	be	done,	without	having	to	provide	an
implementation.
Long	before	there	was	object-oriented	programming,	there	were	functional
programming	languages,	such	as	Lisp,	in	which	functions	and	not	objects	are	the
primary	structuring	mechanism.	Recently,	functional	programming	has	risen	in
importance	because	it	is	well	suited	for	concurrent	and	event-driven	(or
“reactive”)	programming.	Java	supports	function	expressions	that	provide	a
convenient	bridge	between	object-oriented	and	functional	programming.	In	this
chapter,	you	will	learn	about	interfaces	and	lambda	expressions.
The	key	points	of	this	chapter	are:
1.	An	interface	specifies	a	set	of	methods	that	an	implementing	class	must
provide.

2.	An	interface	is	a	supertype	of	any	class	that	implements	it.	Therefore,	one	can
assign	instances	of	the	class	to	variables	of	the	interface	type.

3.	An	interface	can	contain	static	methods.	All	variables	of	an	interface	are
automatically	public,	static,	and	final.

4.	An	interface	can	contain	default	methods	that	an	implementing	class	can
inherit	or	override.

5.	An	interface	can	contain	private	methods	that	cannot	be	called	or	overridden
by	implementing	classes.

6.	The	Comparable	and	Comparator	interfaces	are	used	for	comparing
objects.

7.	A	functional	interface	is	an	interface	with	a	single	abstract	method.
8.	A	lambda	expression	denotes	a	block	of	code	that	can	be	executed	at	a	later
point	in	time.

9.	Lambda	expressions	are	converted	to	functional	interfaces.
10.	Method	and	constructor	references	refer	to	methods	or	constructors	without

invoking	them.
11.	Lambda	expressions	and	local	classes	can	access	effectively	final	variables

from	the	enclosing	scope.

3.1	Interfaces
An	interface	is	a	mechanism	for	spelling	out	a	contract	between	two	parties:	the
supplier	of	a	service	and	the	classes	that	want	their	objects	to	be	usable	with	the
service.	In	the	following	sections,	you	will	see	how	to	define	and	use	interfaces
in	Java.

3.1.1	Declaring	an	Interface
Consider	a	service	that	works	on	sequences	of	integers,	reporting	the	average	of
the	first	n	values:
Click	here	to	view	code	image

public	static	double	average(IntSequence	seq,	int	n)

Such	sequences	can	take	many	forms.	Here	are	some	examples:
•	A	sequence	of	integers	supplied	by	a	user
•	A	sequence	of	random	integers
•	The	sequence	of	prime	numbers
•	The	sequence	of	elements	in	an	integer	array
•	The	sequence	of	code	points	in	a	string
•	The	sequence	of	digits	in	a	number

We	want	to	implement	a	single	mechanism	for	dealing	with	all	these	kinds	of

sequences.
First,	let	us	spell	out	what	is	common	between	integer	sequences.	At	a	minimum,
one	needs	two	methods	for	working	with	a	sequence:
•	Test	whether	there	is	a	next	element
•	Get	the	next	element

To	declare	an	interface,	you	provide	the	method	headers,	like	this:
Click	here	to	view	code	image

public	interface	IntSequence	{

boolean	hasNext();

int	next();

}

You	need	not	implement	these	methods,	but	you	can	provide	default
implementations	if	you	like—see	Section	3.2.2,	“Default	Methods”	(page	106).
If	no	implementation	is	provided,	we	say	that	the	method	is	abstract.

	Note

All	methods	of	an	interface	are	automatically	public.	Therefore,	it	is
not	necessary	to	declare	hasNext	and	next	as	public.	Some
programmers	do	it	anyway	for	greater	clarity.

The	methods	in	the	interface	suffice	to	implement	the	average	method:
Click	here	to	view	code	image

public	static	double	average(IntSequence	seq,	int	n)	{

int	count	=	0;

double	sum	=	0;

while	(seq.hasNext()	&&	count	<	n)	{

count++;

sum	+=	seq.next();

}

return	count	==	0	?	0	:	sum	/	count;

}

3.1.2	Implementing	an	Interface
Now	let's	look	at	the	other	side	of	the	coin:	the	classes	that	want	to	be	usable
with	the	average	method.	They	need	to	implement	the	IntSequence
interface.	Here	is	such	a	class:
Click	here	to	view	code	image

public	class	SquareSequence	implements	IntSequence	{

private	int	i;

public	boolean	hasNext()	{

return	true;

}

public	int	next()	{

i++;

return	i	*	i;

}

}

There	are	infinitely	many	squares,	and	an	object	of	this	class	delivers	them	all,
one	at	a	time.	(To	keep	the	example	simple,	we	ignore	integer	overflow—see
Exercise	6.)
The	implements	keyword	indicates	that	the	SquareSequence	class
intends	to	conform	to	the	IntSequence	interface.

	Caution

The	implementing	class	must	declare	the	methods	of	the	interface	as
public.	Otherwise,	they	would	default	to	package	access.	Since	the
interface	requires	public	access,	the	compiler	would	report	an	error.

This	code	gets	the	average	of	the	first	100	squares:
Click	here	to	view	code	image

SquareSequence	squares	=	new	SquareSequence();

double	avg	=	average(squares,	100);

There	are	many	classes	that	can	implement	the	IntSequence	interface.	For
example,	this	class	yields	a	finite	sequence,	namely	the	digits	of	a	positive
integer	starting	with	the	least	significant	one:
Click	here	to	view	code	image

public	class	DigitSequence	implements	IntSequence	{

private	int	number;

public	DigitSequence(int	n)	{

number	=	n;

}

public	boolean	hasNext()	{

return	number	!=	0;

}

public	int	next()	{

int	result	=	number	%	10;

number	/=	10;

return	result;

}

public	int	rest()	{

return	number;

}

}

An	object	new	DigitSequence(1729)	delivers	the	digits	9	2	7	1
before	hasNext	returns	false.

	Note

The	SquareSequence	and	DigitSequence	classes	implement	all
methods	of	the	IntSequence	interface.	If	a	class	only	implements
some	of	the	methods,	then	it	must	be	declared	with	the	abstract
modifier.	See	Chapter	4	for	more	information	on	abstract	classes.

3.1.3	Converting	to	an	Interface	Type
This	code	fragment	computes	the	average	of	the	digit	sequence	values:
Click	here	to	view	code	image

IntSequence	digits	=	new	DigitSequence(1729);

double	avg	=	average(digits,	100);

//	Will	only	look	at	the	first	four	sequence	values

Look	at	the	digits	variable.	Its	type	is	IntSequence,	not
DigitSequence.	A	variable	of	type	IntSequence	refers	to	an	object	of
some	class	that	implements	the	IntSequence	interface.	You	can	always
assign	an	object	to	a	variable	whose	type	is	an	implemented	interface,	or	pass	it
to	a	method	expecting	such	an	interface.
Here	is	a	bit	of	useful	terminology.	A	type	S	is	a	supertype	of	the	type	T	(the
subtype)	when	any	value	of	the	subtype	can	be	assigned	to	a	variable	of	the
supertype	without	a	conversion.	For	example,	the	IntSequence	interface	is	a
supertype	of	the	DigitSequence	class.

	Note

Even	though	it	is	possible	to	declare	variables	of	an	interface	type,	you
can	never	have	an	object	whose	type	is	an	interface.	All	objects	are
instances	of	classes.

3.1.4	Casts	and	the	instanceof	Operator
Occasionally,	you	need	the	opposite	conversion—from	a	supertype	to	a	subtype.
Then	you	use	a	cast.	For	example,	if	you	happen	to	know	that	the	object	stored
in	an	IntSequence	is	actually	a	DigitSequence,	you	can	convert	the	type
like	this:
Click	here	to	view	code	image

IntSequence	sequence	=	...;

DigitSequence	digits	=	(DigitSequence)	sequence;

System.out.println(digits.rest());

In	this	scenario,	the	cast	was	necessary	because	rest	is	a	method	of
DigitSequence	but	not	IntSequence.
See	Exercise	2	for	a	more	compelling	example.
You	can	only	cast	an	object	to	its	actual	class	or	one	of	its	supertypes.	If	you	are
wrong,	a	compile-time	error	or	class	cast	exception	will	occur:
Click	here	to	view	code	image

String	digitString	=	(String)	sequence;

//	Cannot	possibly	work—IntSequence	is	not	a	supertype	of	String
RandomSequence	randoms	=	(RandomSequence)	sequence;

//	Could	work,	throws	a	class	cast	exception	if	not

To	avoid	the	exception,	you	can	first	test	whether	the	object	is	of	the	desired
type,	using	the	instanceof	operator.	The	expression

object	instanceof	Type

returns	true	if	object	is	an	instance	of	a	class	that	has	Type	as	a	supertype.	It	is
a	good	idea	to	make	this	check	before	using	a	cast.
Click	here	to	view	code	image

if	(sequence	instanceof	DigitSequence)	{

DigitSequence	digits	=	(DigitSequence)	sequence;

...

}

	Note

The	instanceof	operator	is	null-safe:	The	expression	obj
instanceof	Type	is	false	if	obj	is	null.	After	all,	null	cannot
possibly	be	a	reference	to	an	object	of	any	given	type.

3.1.5	Extending	Interfaces
An	interface	can	extend	another,	requiring	or	providing	additional	methods	on
top	of	the	original	ones.	For	example,	Closeable	is	an	interface	with	a	single
method:
public	interface	Closeable	{

void	close();

}

As	you	will	see	in	Chapter	5,	this	is	an	important	interface	for	closing	resources
when	an	exception	occurs.
The	Channel	interface	extends	this	interface:
Click	here	to	view	code	image

public	interface	Channel	extends	Closeable	{

boolean	isOpen();

}

A	class	that	implements	the	Channel	interface	must	provide	both	methods,	and
its	objects	can	be	converted	to	both	interface	types.

3.1.6	Implementing	Multiple	Interfaces
A	class	can	implement	any	number	of	interfaces.	For	example,	a
FileSequence	class	that	reads	integers	from	a	file	can	implement	the
Closeable	interface	in	addition	to	IntSequence:
Click	here	to	view	code	image

public	class	FileSequence	implements	IntSequence,	Closeable	{

...

}

Then	the	FileSequence	class	has	both	IntSequence	and	Closeable	as
supertypes.

3.1.7	Constants
Any	variable	defined	in	an	interface	is	automatically	public	static
final.

For	example,	the	SwingConstants	interface	defines	constants	for	compass
directions:
Click	here	to	view	code	image

public	interface	SwingConstants	{

int	NORTH	=	1;

int	NORTH_EAST	=	2;

int	EAST	=	3;

...

}

You	can	refer	to	them	by	their	qualified	name,	SwingConstants.NORTH.	If
your	class	chooses	to	implement	the	SwingConstants	interface,	you	can
drop	the	SwingConstants	qualifier	and	simply	write	NORTH.	However,	this
is	not	a	common	idiom.	It	is	far	better	to	use	enumerations	for	a	set	of	constants;
see	Chapter	4.

	Note

You	cannot	have	instance	variables	in	an	interface.	An	interface
specifies	behavior,	not	object	state.

3.2	Static,	Default,	and	Private	Methods
In	earlier	versions	of	Java,	all	methods	of	an	interface	had	to	be	abstract—that	is,
without	a	body.	Nowadays	you	can	add	three	kinds	of	methods	with	a	concrete
implementation:	static,	default,	and	private	methods.	The	following	sections
describe	these	methods.

3.2.1	Static	Methods
There	was	never	a	technical	reason	why	an	interface	could	not	have	static
methods,	but	they	did	not	fit	into	the	view	of	interfaces	as	abstract	specifications.
That	thinking	has	now	evolved.	In	particular,	factory	methods	make	a	lot	of
sense	in	interfaces.	For	example,	the	IntSequence	interface	can	have	a	static
method	digitsOf	that	generates	a	sequence	of	digits	of	a	given	integer:
Click	here	to	view	code	image

IntSequence	digits	=	IntSequence.digitsOf(1729);

The	method	yields	an	instance	of	some	class	implementing	the	IntSequence
interface,	but	the	caller	need	not	care	which	one	it	is.

Click	here	to	view	code	image

public	interface	IntSequence	{

...

static	IntSequence	digitsOf(int	n)	{

return	new	DigitSequence(n);

}

}

	Note

In	the	past,	it	had	been	common	to	place	static	methods	in	a	companion
class.	You	find	pairs	of	interfaces	and	utility	classes,	such	as
Collection/Collections	or	Path/Paths,	in	the	Java	API.	This
split	is	no	longer	necessary.

3.2.2	Default	Methods
You	can	supply	a	default	implementation	for	any	interface	method.	You	must	tag
such	a	method	with	the	default	modifier.
Click	here	to	view	code	image

public	interface	IntSequence	{

default	boolean	hasNext()	{	return	true;	}

//	By	default,	sequences	are	infinite
int	next();

}

A	class	implementing	this	interface	can	choose	to	override	the	hasNext
method	or	to	inherit	the	default	implementation.

	Note

Default	methods	put	an	end	to	the	classic	pattern	of	providing	an
interface	and	a	companion	class	that	implements	most	or	all	of	its
methods,	such	as	Collection/AbstractCollection	or
WindowListener/WindowAdapter	in	the	Java	API.	Nowadays
you	should	just	implement	the	methods	in	the	interface.

An	important	use	for	default	methods	is	interface	evolution.	Consider	for
example	the	Collection	interface	that	has	been	a	part	of	Java	for	many	years.
Suppose	that	way	back	when,	you	provided	a	class

Click	here	to	view	code	image

public	class	Bag	implements	Collection

Later,	in	Java	8,	a	stream	method	was	added	to	the	interface.
Suppose	the	stream	method	was	not	a	default	method.	Then	the	Bag	class	no
longer	compiles	since	it	doesn't	implement	the	new	method.	Adding	a	nondefault
method	to	an	interface	is	not	source-compatible.
But	suppose	you	don't	recompile	the	class	and	simply	use	an	old	JAR	file
containing	it.	The	class	will	still	load,	even	with	the	missing	method.	Programs
can	still	construct	Bag	instances,	and	nothing	bad	will	happen.	(Adding	a
method	to	an	interface	is	binary-compatible.)	However,	if	a	program	calls	the
stream	method	on	a	Bag	instance,	an	AbstractMethodError	occurs.
Making	the	method	a	default	method	solves	both	problems.	The	Bag	class
will	again	compile.	And	if	the	class	is	loaded	without	being	recompiled	and	the
stream	method	is	invoked	on	a	Bag	instance,	the	Collection.stream
method	is	called.

3.2.3	Resolving	Default	Method	Conflicts
If	a	class	implements	two	interfaces,	one	of	which	has	a	default	method	and	the
other	a	method	(default	or	not)	with	the	same	name	and	parameter	types,	then
you	must	resolve	the	conflict.	This	doesn't	happen	very	often,	and	it	is	usually
easy	to	deal	with	the	situation.
Let's	look	at	an	example.	Suppose	we	have	an	interface	Person	with	a	getId
method:
Click	here	to	view	code	image

public	interface	Person	{

String	getName();

default	int	getId()	{	return	0;	}

}

And	suppose	there	is	an	interface	Identified,	also	with	such	a	method.
Click	here	to	view	code	image

public	interface	Identified	{

default	int	getId()	{	return	Math.abs(hashCode());	}

}

You	will	see	what	the	hashCode	method	does	in	Chapter	4.	For	now,	all	that
matters	is	that	it	returns	some	integer	that	is	derived	from	the	object.
What	happens	if	you	form	a	class	that	implements	both	of	them?

Click	here	to	view	code	image

public	class	Employee	implements	Person,	Identified	{

...

}

The	class	inherits	two	getId	methods	provided	by	the	Person	and
Identified	interfaces.	There	is	no	way	for	the	Java	compiler	to	choose	one
over	the	other.	The	compiler	reports	an	error	and	leaves	it	up	to	you	to	resolve
the	ambiguity.	Provide	a	getId	method	in	the	Employee	class	and	either
implement	your	own	ID	scheme,	or	delegate	to	one	of	the	conflicting	methods,
like	this:
Click	here	to	view	code	image

public	class	Employee	implements	Person,	Identified	{

public	int	getId()	{	return	Identified.super.getId();	}

...

}

	Note

The	super	keyword	lets	you	call	a	supertype	method.	In	this	case,	we
need	to	specify	which	supertype	we	want.	The	syntax	may	seem	a	bit
odd,	but	it	is	consistent	with	the	syntax	for	invoking	a	superclass	method
that	you	will	see	in	Chapter	4.

Now	assume	that	the	Identified	interface	does	not	provide	a	default
implementation	for	getId:
interface	Identified	{

int	getId();

}

Can	the	Employee	class	inherit	the	default	method	from	the	Person
interface?	At	first	glance,	this	might	seem	reasonable.	But	how	does	the
compiler	know	whether	the	Person.getId	method	actually	does	what
Identified.getId	is	expected	to	do?	After	all,	it	might	return	the	level	of
the	person's	Freudian	id,	not	an	ID	number.
The	Java	designers	decided	in	favor	of	safety	and	uniformity.	It	doesn’t	matter
how	two	interfaces	conflict;	if	at	least	one	interface	provides	an	implementation,
the	compiler	reports	an	error,	and	it	is	up	to	the	programmer	to	resolve	the
ambiguity.

	Note

If	neither	interface	provides	a	default	for	a	shared	method,	then	there	is
no	conflict.	An	implementing	class	has	two	choices:	implement	the
method,	or	leave	it	unimplemented	and	declare	the	class	as	abstract.

	Note

If	a	class	extends	a	superclass	(see	Chapter	4)	and	implements	an
interface,	inheriting	the	same	method	from	both,	the	rules	are	easier.	In
that	case,	only	the	superclass	method	matters,	and	any	default	method
from	the	interface	is	simply	ignored.	This	is	actually	a	more	common
case	than	conflicting	interfaces.	See	Chapter	4	for	the	details.

3.2.4	Private	Methods
As	of	Java	9,	methods	in	an	interface	can	be	private.	A	private	method	can	be
static	or	an	instance	method,	but	it	cannot	be	a	default	method	since	that
can	be	overridden.	As	private	methods	can	only	be	used	in	the	methods	of	the
interface	itself,	their	use	is	limited	to	being	helper	methods	for	the	other	methods
of	the	interface.
For	example,	suppose	the	IntSequence	class	provides	methods
static	of(int	a)

static	of(int	a,	int	b)

static	of(int	a,	int	b,	int	c)

Then	each	of	these	methods	could	call	a	helper	method
Click	here	to	view	code	image

private	static	IntSequence	makeFiniteSequence(int...	values)	{	...	}

3.3	Examples	of	Interfaces
At	first	glance,	interfaces	don't	seem	to	do	very	much.	An	interface	is	just	a	set
of	methods	that	a	class	promises	to	implement.	To	make	the	importance	of
interfaces	more	tangible,	the	following	sections	show	you	four	examples	of
commonly	used	interfaces	from	the	Java	API.

3.3.1	The	Comparable	Interface

Suppose	you	want	to	sort	an	array	of	objects.	A	sorting	algorithm	repeatedly
compares	elements	and	rearranges	them	if	they	are	out	of	order.	Of	course,	the
rules	for	doing	the	comparison	are	different	for	each	class,	and	the	sorting
algorithm	should	just	call	a	method	supplied	by	the	class.	As	long	as	all	classes
can	agree	on	what	that	method	is	called,	the	sorting	algorithm	can	do	its	job.
That	is	where	interfaces	come	in.
If	a	class	wants	to	enable	sorting	for	its	objects,	it	should	implement	the
Comparable	interface.	There	is	a	technical	point	about	this	interface.	We	want
to	compare	strings	against	strings,	employees	against	employees,	and	so	on.	For
that	reason,	the	Comparable	interface	has	a	type	parameter.
Click	here	to	view	code	image

public	interface	Comparable<T>	{

int	compareTo(T	other);

}

For	example,	the	String	class	implements	Comparable<String>	so	that
its	compareTo	method	has	the	signature
int	compareTo(String	other)

	Note

A	type	with	a	type	parameter	such	as	Comparable	or	ArrayList	is
a	generic	type.	You	will	learn	all	about	generic	types	in	Chapter	6.

When	calling	x.compareTo(y),	the	compareTo	method	returns	an	integer
value	to	indicate	whether	x	or	y	should	come	first.	A	positive	return	value	(not
necessarily	1)	indicates	that	x	should	come	after	y.	A	negative	integer	(not
necessarily	-1)	is	returned	when	x	should	come	before	y.	If	x	and	y	are
considered	equal,	the	returned	value	is	0.
Note	that	the	return	value	can	be	any	integer.	That	flexibility	is	useful	because	it
allows	you	to	return	a	difference	of	integers.	That	is	handy,	provided	the
difference	cannot	produce	integer	overflow.
Click	here	to	view	code	image

public	class	Employee	implements	Comparable<Employee>	{

...

public	int	compareTo(Employee	other)	{

return	getId()	-	other.getId();	//	Ok	if	IDs	always	≥	0
}

}

	Caution

Returning	a	difference	of	integers	does	not	always	work.	The	difference
can	overflow	for	large	operands	of	opposite	sign.	In	that	case,	use	the
Integer.compare	method	that	works	correctly	for	all	integers.
However,	if	you	know	that	the	integers	are	non-negative,	or	their
absolute	value	is	less	than	Integer.MAX_VALUE	/	2,	then	the
difference	works	fine.

When	comparing	floating-point	values,	you	cannot	just	return	the	difference.
Instead,	use	the	static	Double.compare	method.	It	does	the	right	thing,	even
for	±∞	and	NaN.
Here	is	how	the	Employee	class	can	implement	the	Comparable	interface,
ordering	employees	by	salary:
Click	here	to	view	code	image

public	class	Employee	implements	Comparable<Employee>	{

...

public	int	compareTo(Employee	other)	{

return	Double.compare(salary,	other.salary);

}

}

	Note

It	is	perfectly	legal	for	the	compare	method	to	access
other.salary.	In	Java,	a	method	can	access	private	features	of	any
object	of	its	class.

The	String	class,	as	well	as	over	a	hundred	other	classes	in	the	Java	library,
implements	the	Comparable	interface.	You	can	use	the	Arrays.sort
method	to	sort	an	array	of	Comparable	objects:
Click	here	to	view	code	image

String[]	friends	=	{	"Peter",	"Paul",	"Mary"	};

Arrays.sort(friends);	//	friends	is	now	["Mary",	"Paul",	"Peter"]

	Note

Strangely,	the	Arrays.sort	method	does	not	check	at	compile	time
whether	the	argument	is	an	array	of	Comparable	objects.	Instead,	it
throws	an	exception	if	it	encounters	an	element	of	a	class	that	doesn't
implement	the	Comparable	interface.

3.3.2	The	Comparator	Interface
Now	suppose	we	want	to	sort	strings	by	increasing	length,	not	in	dictionary
order.	We	can't	have	the	String	class	implement	the	compareTo	method	in
two	ways—and	at	any	rate,	the	String	class	isn't	ours	to	modify.
To	deal	with	this	situation,	there	is	a	second	version	of	the	Arrays.sort
method	whose	parameters	are	an	array	and	a	comparator—an	instance	of	a	class
that	implements	the	Comparator	interface.
Click	here	to	view	code	image

public	interface	Comparator<T>	{

int	compare(T	first,	T	second);

}

To	compare	strings	by	length,	define	a	class	that	implements
Comparator<String>:
Click	here	to	view	code	image

class	LengthComparator	implements	Comparator<String>	{

public	int	compare(String	first,	String	second)	{

return	first.length()	-	second.length();

}

}

To	actually	do	the	comparison,	you	need	to	make	an	instance:
Click	here	to	view	code	image

Comparator<String>	comp	=	new	LengthComparator();

if	(comp.compare(words[i],	words[j])	>	0)	...

Contrast	this	call	with	words[i].compareTo(words[j]).	The	compare
method	is	called	on	the	comparator	object,	not	the	string	itself.

	Note

Even	though	the	LengthComparator	object	has	no	state,	you	still

need	to	make	an	instance	of	it.	You	need	the	instance	to	call	the
compare	method—it	is	not	a	static	method.

To	sort	an	array,	pass	a	LengthComparator	object	to	the	Arrays.sort
method:
Click	here	to	view	code	image

String[]	friends	=	{	"Peter",	"Paul",	"Mary"	};

Arrays.sort(friends,	new	LengthComparator());

Now	the	array	is	either	["Paul",	"Mary",	"Peter"]	or	["Mary",
"Paul",	"Peter"].
You	will	see	in	Section	3.4.2,	“Functional	Interfaces”	(page	115)	how	to	use	a
Comparator	much	more	easily,	using	a	lambda	expression.

3.3.3	The	Runnable	Interface
At	a	time	when	just	about	every	processor	has	multiple	cores,	you	want	to	keep
those	cores	busy.	You	may	want	to	run	certain	tasks	in	a	separate	thread,	or	give
them	to	a	thread	pool	for	execution.	To	define	the	task,	you	implement	the
Runnable	interface.	This	interface	has	just	one	method.
Click	here	to	view	code	image

class	HelloTask	implements	Runnable	{

public	void	run()	{

for	(int	i	=	0;	i	<	1000;	i++)	{

System.out.println("Hello,	World!");

}

}

}

If	you	want	to	execute	this	task	in	a	new	thread,	create	the	thread	from	the
Runnable	and	start	it.
Click	here	to	view	code	image

Runnable	task	=	new	HelloTask();

Thread	thread	=	new	Thread(task);

thread.start();

Now	the	run	method	executes	in	a	separate	thread,	and	the	current	thread	can
proceed	with	other	work.

	Note

In	Chapter	10,	you	will	see	other	ways	of	executing	a	Runnable.

	Note

There	is	also	a	Callable<T>	interface	for	tasks	that	return	a	result	of
type	T.

3.3.4	User	Interface	Callbacks
In	a	graphical	user	interface,	you	have	to	specify	actions	to	be	carried	out	when
the	user	clicks	a	button,	selects	a	menu	option,	drags	a	slider,	and	so	on.	These
actions	are	often	called	callbacks	because	some	code	gets	called	back	when	a
user	action	occurs.
In	Java-based	GUI	libraries,	interfaces	are	used	for	callbacks.	For	example,	in
JavaFX,	the	following	interface	is	used	for	reporting	events:
Click	here	to	view	code	image

public	interface	EventHandler<T>	{

void	handle(T	event);

}

This	too	is	a	generic	interface	where	T	is	the	type	of	event	that	is	being	reported,
such	as	an	ActionEvent	for	a	button	click.
To	specify	the	action,	implement	the	interface:
Click	here	to	view	code	image

class	CancelAction	implements	EventHandler<ActionEvent>	{

public	void	handle(ActionEvent	event)	{

System.out.println("Oh	noes!");

}

}

Then,	make	an	object	of	that	class	and	add	it	to	the	button:
Click	here	to	view	code	image

Button	cancelButton	=	new	Button("Cancel");

cancelButton.setOnAction(new	CancelAction());

	Note

Since	Oracle	positions	JavaFX	as	the	successor	to	the	Swing	GUI

toolkit,	I	use	JavaFX	in	these	examples.	(Don't	worry—you	need	not
know	any	more	about	JavaFX	than	the	couple	of	statements	you	just
saw.)	The	details	don’t	matter;	in	every	user	interface	toolkit,	be	it
Swing,	JavaFX,	or	Android,	you	give	a	button	some	code	that	you	want
to	run	when	the	button	is	clicked.

Of	course,	this	way	of	defining	a	button	action	is	rather	tedious.	In	other
languages,	you	just	give	the	button	a	function	to	execute,	without	going	through
the	detour	of	making	a	class	and	instantiating	it.	The	next	section	shows	how
you	can	do	the	same	in	Java.

3.4	Lambda	Expressions
A	lambda	expression	is	a	block	of	code	that	you	can	pass	around	so	it	can	be
executed	later,	once	or	multiple	times.	In	the	preceding	sections,	you	have	seen
many	situations	where	it	is	useful	to	specify	such	a	block	of	code:
•	To	pass	a	comparison	method	to	Arrays.sort
•	To	run	a	task	in	a	separate	thread
•	To	specify	an	action	that	should	happen	when	a	button	is	clicked

However,	Java	is	an	object-oriented	language	where	(just	about)	everything	is	an
object.	There	are	no	function	types	in	Java.	Instead,	functions	are	expressed	as
objects,	instances	of	classes	that	implement	a	particular	interface.	Lambda
expressions	give	you	a	convenient	syntax	for	creating	such	instances.

3.4.1	The	Syntax	of	Lambda	Expressions
Consider	again	the	sorting	example	from	Section	3.3.2,	“The	Comparator
Interface”	(page	111).	We	pass	code	that	checks	whether	one	string	is	shorter
than	another.	We	compute
Click	here	to	view	code	image

first.length()	-	second.length()

What	are	first	and	second?	They	are	both	strings.	Java	is	a	strongly	typed
language,	and	we	must	specify	that	as	well:
Click	here	to	view	code	image

(String	first,	String	second)	->	first.length()	-	second.length()

You	have	just	seen	your	first	lambda	expression.	Such	an	expression	is	simply	a
block	of	code,	together	with	the	specification	of	any	variables	that	must	be

passed	to	the	code.
Why	the	name?	Many	years	ago,	before	there	were	any	computers,	the	logician
Alonzo	Church	wanted	to	formalize	what	it	means	for	a	mathematical	function
to	be	effectively	computable.	(Curiously,	there	are	functions	that	are	known	to
exist,	but	nobody	knows	how	to	compute	their	values.)	He	used	the	Greek	letter
lambda	(λ)	to	mark	parameters,	somewhat	like
Click	here	to	view	code	image

λfirst.	λsecond.	first.length()	-	second.length()

	Note

Why	the	letter	λ?	Did	Church	run	out	of	letters	of	the	alphabet?
Actually,	the	venerable	Principia	Mathematica	(see
http://plato.stanford.edu/entries/principia-mathematica)	used	the	^
accent	to	denote	function	parameters,	which	inspired	Church	to	use	an
uppercase	lambda	Λ.	But	in	the	end,	he	switched	to	the	lowercase
version.	Ever	since,	an	expression	with	parameter	variables	has	been
called	a	lambda	expression.

If	the	body	of	a	lambda	expression	carries	out	a	computation	that	doesn’t	fit	in	a
single	expression,	write	it	exactly	like	you	would	have	written	a	method:
enclosed	in	{}	and	with	explicit	return	statements.	For	example,
Click	here	to	view	code	image

(String	first,	String	second)	->	{

int	difference	=	first.length()	<	second.length();

if	(difference	<	0)	return	-1;

else	if	(difference	>	0)	return	1;

else	return	0;

}

If	a	lambda	expression	has	no	parameters,	supply	empty	parentheses,	just	as	with
a	parameterless	method:
Click	here	to	view	code	image

Runnable	task	=	()	->	{	for	(int	i	=	0;	i	<	1000;	i++)	doWork();	}

If	the	parameter	types	of	a	lambda	expression	can	be	inferred,	you	can	omit
them.	For	example,
Click	here	to	view	code	image

http://http://plato.stanford.edu/entries/principia-mathematica

Comparator<String>	comp

=	(first,	second)	->	first.length()	-	second.length();

//	Same	as	(String	first,	String	second)

Here,	the	compiler	can	deduce	that	first	and	second	must	be	strings	because
the	lambda	expression	is	assigned	to	a	string	comparator.	(We	will	have	a	closer
look	at	this	assignment	in	the	next	section.)
If	a	method	has	a	single	parameter	with	inferred	type,	you	can	even	omit	the
parentheses:
Click	here	to	view	code	image

EventHandler<ActionEvent>	listener	=	event	->

System.out.println("Oh	noes!");

//	Instead	of	(event)	->	or	(ActionEvent	event)	->

You	never	specify	the	result	type	of	a	lambda	expression.	However,	the	compiler
infers	it	from	the	body	and	checks	that	it	matches	the	expected	type.	For
example,	the	expression
Click	here	to	view	code	image

(String	first,	String	second)	->	first.length()	-	second.length()

can	be	used	in	a	context	where	a	result	of	type	int	is	expected	(or	a	compatible
type	such	as	Integer,	long,	or	double).

3.4.2	Functional	Interfaces
As	you	already	saw,	there	are	many	interfaces	in	Java	that	express	actions,	such
as	Runnable	or	Comparator.	Lambda	expressions	are	compatible	with	these
interfaces.
You	can	supply	a	lambda	expression	whenever	an	object	of	an	interface	with	a
single	abstract	method	is	expected.	Such	an	interface	is	called	a	functional
interface.
To	demonstrate	the	conversion	to	a	functional	interface,	consider	the
Arrays.sort	method.	Its	second	parameter	requires	an	instance	of
Comparator,	an	interface	with	a	single	method.	Simply	supply	a	lambda:
Click	here	to	view	code	image

Arrays.sort(words,

(first,	second)	->	first.length()	-	second.length());

Behind	the	scenes,	the	second	parameter	variable	of	the	Arrays.sort	method
receives	an	object	of	some	class	that	implements	Comparator<String>.

Invoking	the	compare	method	on	that	object	executes	the	body	of	the	lambda
expression.	The	management	of	these	objects	and	classes	is	completely
implementation-dependent	and	highly	optimized.
In	most	programming	languages	that	support	function	literals,	you	can	declare
function	types	such	as	(String,	String)	->	int,	declare	variables	of
those	types,	put	functions	into	those	variables,	and	invoke	them.	In	Java,	there	is
only	one	thing	you	can	do	with	a	lambda	expression:	put	it	in	a	variable	whose
type	is	a	functional	interface,	so	that	it	is	converted	to	an	instance	of	that
interface.

	Note

You	cannot	assign	a	lambda	expression	to	a	variable	of	type	Object,
the	common	supertype	of	all	classes	in	Java	(see	Chapter	4).	Object	is
a	class,	not	a	functional	interface.

The	Java	API	provides	a	large	number	of	functional	interfaces	(see	Section	3.6.2,
“Choosing	a	Functional	Interface,”	page	120).	One	of	them	is
Click	here	to	view	code	image

public	interface	Predicate<T>	{

boolean	test(T	t);

//	Additional	default	and	static	methods
}

The	ArrayList	class	has	a	removeIf	method	whose	parameter	is	a
Predicate.	It	is	specifically	designed	for	receiving	a	lambda	expression.	For
example,	the	following	statement	removes	all	null	values	from	an	array	list:
Click	here	to	view	code	image

list.removeIf(e	->	e	==	null);

3.5	Method	and	Constructor	References
Sometimes,	there	is	already	a	method	that	carries	out	exactly	the	action	that
you’d	like	to	pass	on	to	some	other	code.	There	is	special	syntax	for	a	method
reference	that	is	even	shorter	than	a	lambda	expression	calling	the	method.	A
similar	shortcut	exists	for	constructors.	You	will	see	both	in	the	following
sections.

3.5.1	Method	References

Suppose	you	want	to	sort	strings	regardless	of	letter	case.	You	could	call
Click	here	to	view	code	image

Arrays.sort(strings,	(x,	y)	->	x.compareToIgnoreCase(y));

Instead,	you	can	pass	this	method	expression:
Click	here	to	view	code	image

Arrays.sort(strings,	String::compareToIgnoreCase);

The	expression	String::compareToIgnoreCase	is	a	method	reference
that	is	equivalent	to	the	lambda	expression	(x,	y)	->
x.compareToIgnoreCase(y).
Here	is	another	example.	The	Objects	class	defines	a	method	isNull.	The
call	Objects.isNull(x)	simply	returns	the	value	of	x	==	null.	It	seems
hardly	worth	having	a	method	for	this	case,	but	it	was	designed	to	be	passed	as	a
method	expression.	The	call
Click	here	to	view	code	image

list.removeIf(Objects::isNull);

removes	all	null	values	from	a	list.
As	another	example,	suppose	you	want	to	print	all	elements	of	a	list.	The
ArrayList	class	has	a	method	forEach	that	applies	a	function	to	each
element.	You	could	call
Click	here	to	view	code	image

list.forEach(x	->	System.out.println(x));

It	would	be	nicer,	however,	if	you	could	just	pass	the	println	method	to	the
forEach	method.	Here	is	how	to	do	that:
Click	here	to	view	code	image

list.forEach(System.out::println);

As	you	can	see	from	these	examples,	the	::	operator	separates	the	method	name
from	the	name	of	a	class	or	object.	There	are	three	variations:
1.	Class::instanceMethod
2.	Class::staticMethod
3.	object::instanceMethod
In	the	first	case,	the	first	parameter	becomes	the	receiver	of	the	method,	and	any
other	parameters	are	passed	to	the	method.	For	example,

String::compareToIgnoreCase	is	the	same	as	(x,	y)	->
x.compareToIgnoreCase(y).
In	the	second	case,	all	parameters	are	passed	to	the	static	method.	The	method
expression	Objects::isNull	is	equivalent	to	x	->
Objects.isNull(x).
In	the	third	case,	the	method	is	invoked	on	the	given	object,	and	the	parameters
are	passed	to	the	instance	method.	Therefore,	System.out::println	is
equivalent	to	x	->	System.out.println(x).

	Note

When	there	are	multiple	overloaded	methods	with	the	same	name,	the
compiler	will	try	to	find	from	the	context	which	one	you	mean.	For
example,	there	are	multiple	versions	of	the	println	method.	When
passed	to	the	forEach	method	of	an	ArrayList<String>,	the
println(String)	method	is	picked.

You	can	capture	the	this	parameter	in	a	method	reference.	For	example,
this::equals	is	the	same	as	x	->	this.equals(x).

	Note

In	an	inner	class,	you	can	capture	the	this	reference	of	an	enclosing
class	as	EnclosingClass.this::method.	You	can	also	capture	super
—see	Chapter	4.

3.5.2	Constructor	References
Constructor	references	are	just	like	method	references,	except	that	the	name	of
the	method	is	new.	For	example,	Employee::new	is	a	reference	to	an
Employee	constructor.	If	the	class	has	more	than	one	constructor,	then	it
depends	on	the	context	which	constructor	is	chosen.
Here	is	an	example	for	using	such	a	constructor	reference.	Suppose	you	have	a
list	of	strings
List<String>	names	=	...;

You	want	a	list	of	employees,	one	for	each	name.	As	you	will	see	in	Chapter	8,

you	can	use	streams	to	do	this	without	a	loop:	Turn	the	list	into	a	stream,	and
then	call	the	map	method.	It	applies	a	function	and	collects	all	results.
Click	here	to	view	code	image

Stream<Employee>	stream	=	names.stream().map(Employee::new);

Since	names.stream()	contains	String	objects,	the	compiler	knows	that
Employee::new	refers	to	the	constructor	Employee(String).
You	can	form	constructor	references	with	array	types.	For	example,
int[]::new	is	a	constructor	reference	with	one	parameter:	the	length	of	the
array.	It	is	equivalent	to	the	lambda	expression	n	->	new	int[n].
Array	constructor	references	are	useful	to	overcome	a	limitation	of	Java:	It	is	not
possible	to	construct	an	array	of	a	generic	type.	(See	Chapter	6	for	details.)	For
that	reason,	methods	such	as	Stream.toArray	return	an	Object	array,	not
an	array	of	the	element	type:
Click	here	to	view	code	image

Object[]	employees	=	stream.toArray();

But	that	is	unsatisfactory.	The	user	wants	an	array	of	employees,	not	objects.	To
solve	this	problem,	another	version	of	toArray	accepts	a	constructor	reference:
Click	here	to	view	code	image

Employee[]	buttons	=	stream.toArray(Employee[]::new);

The	toArray	method	invokes	this	constructor	to	obtain	an	array	of	the	correct
type.	Then	it	fills	and	returns	the	array.

3.6	Processing	Lambda	Expressions
Up	to	now,	you	have	seen	how	to	produce	lambda	expressions	and	pass	them	to
a	method	that	expects	a	functional	interface.	In	the	following	sections,	you	will
see	how	to	write	your	own	methods	that	can	consume	lambda	expressions.

3.6.1	Implementing	Deferred	Execution
The	point	of	using	lambdas	is	deferred	execution.	After	all,	if	you	wanted	to
execute	some	code	right	now,	you’d	do	that,	without	wrapping	it	inside	a
lambda.	There	are	many	reasons	for	executing	code	later,	such	as:
•	Running	the	code	in	a	separate	thread
•	Running	the	code	multiple	times
•	Running	the	code	at	the	right	point	in	an	algorithm	(for	example,	the

comparison	operation	in	sorting)
•	Running	the	code	when	something	happens	(a	button	was	clicked,	data	has
arrived,	and	so	on)
•	Running	the	code	only	when	necessary

Let's	look	at	a	simple	example.	Suppose	you	want	to	repeat	an	action	n	times.
The	action	and	the	count	are	passed	to	a	repeat	method:
Click	here	to	view	code	image

repeat(10,	()	->	System.out.println("Hello,	World!"));

To	accept	the	lambda,	we	need	to	pick	(or,	in	rare	cases,	provide)	a	functional
interface.	In	this	case,	we	can	just	use	Runnable:
Click	here	to	view	code	image

public	static	void	repeat(int	n,	Runnable	action)	{

for	(int	i	=	0;	i	<	n;	i++)	action.run();

}

Note	that	the	body	of	the	lambda	expression	is	executed	when	action.run()
is	called.
Now	let's	make	this	example	a	bit	more	sophisticated.	We	want	to	tell	the	action
in	which	iteration	it	occurs.	For	that,	we	need	to	pick	a	functional	interface	that
has	a	method	with	an	int	parameter	and	a	void	return.	Instead	of	rolling	your
own,	I	strongly	recommend	that	you	use	one	of	the	standard	ones	described	in
the	next	section.	The	standard	interface	for	processing	int	values	is
Click	here	to	view	code	image

public	interface	IntConsumer	{

void	accept(int	value);

}

Here	is	the	improved	version	of	the	repeat	method:
Click	here	to	view	code	image

public	static	void	repeat(int	n,	IntConsumer	action)	{

for	(int	i	=	0;	i	<	n;	i++)	action.accept(i);

}

And	here	is	how	you	call	it:
Click	here	to	view	code	image

repeat(10,	i	->	System.out.println("Countdown:	"	+	(9	-	i)));

3.6.2	Choosing	a	Functional	Interface

In	most	functional	programming	languages,	function	types	are	structural.	To
specify	a	function	that	maps	two	strings	to	an	integer,	you	use	a	type	that	looks
something	like	Function2<String,	String,	Integer>	or
(String,	String)	->	int.	In	Java,	you	instead	declare	the	intent	of	the
function	using	a	functional	interface	such	as	Comparator<String>.	In	the
theory	of	programming	languages	this	is	called	nominal	typing.
Of	course,	there	are	many	situations	where	you	want	to	accept	“any	function”
without	particular	semantics.	There	are	a	number	of	generic	function	types	for
that	purpose	(see	Table	3-1),	and	it's	a	very	good	idea	to	use	one	of	them	when
you	can.

Table	3-1	Common	Functional	Interfaces

Functional	Interface Parameter
types

Return
type

Abstract
method
name

DescriptionOthermethods

Runnable none void run

Runs	an
action
without
arguments
or	return
value

	

Supplier<T> none T get

Supplies	a
value	of
type	T

	

Consumer<T> T void accept

Consumes	a
value	of
type	T

andThen

BiConsumer<T,	U> T,	U void accept

Consumes
values	of
types	T	and
U

andThen

Function<T,	R> T R apply

A	function
with
argument	of
type	T

compose,
andThen,
identity

A	function

BiFunction<T,	U,

R>
T,	U R apply

with
arguments
of	types	T
and	U

andThen

UnaryOperator<T> T T apply

A	unary
operator	on
the	type	T

compose,
andThen,
identity

BinaryOperator<T>T,	T T apply

A	binary
operator	on
the	type	T

andThen,
maxBy,
minBy

Predicate<T> T booleantest

A	boolean-
valued
function

and,	or,
negate,
isEqual

BiPredicate<T,	U>T,	U booleantest

A	boolean-
valued
function
with	two
arguments

and,	or,
negate

For	example,	suppose	you	write	a	method	to	process	files	that	match	a	certain
criterion.	Should	you	use	the	descriptive	java.io.FileFilter	class	or	a
Predicate<File>?	I	strongly	recommend	that	you	use	the	standard
Predicate<File>.	The	only	reason	not	to	do	so	would	be	if	you	already
have	many	useful	methods	producing	FileFilter	instances.

	Note

Most	of	the	standard	functional	interfaces	have	nonabstract	methods	for
producing	or	combining	functions.	For	example,
Predicate.isEqual(a)	is	the	same	as	a::equals,	but	it	also
works	if	a	is	null.	There	are	default	methods	and,	or,	negate	for
combining	predicates.	For	example,

Click	here	to	view	code	image

Predicate.isEqual(a).or(Predicate.isEqual(b))

is	the	same	as

Click	here	to	view	code	image

x	->	a.equals(x)	||	b.equals(x)

Table	3-2	lists	the	34	available	specializations	for	primitive	types	int,	long,
and	double.	It	is	a	good	idea	to	use	these	specializations	to	reduce	autoboxing.
For	that	reason,	I	used	an	IntConsumer	instead	of	a	Consumer<Integer>
in	the	example	of	the	preceding	section.

Table	3-2	Functional	Interfaces	for	Primitive	Types
p,	q	is	int,	long,	double;	P,	Q	is	Int,	Long,	Double

Functional	Interface Parameter
types

Return
type

Abstract	method
name

BooleanSupplier none boolean getAsBoolean

PSupplier none p getAsP
PConsumer p void accept

ObjPConsumer<T> T,	p void accept

PFunction<T> p T apply

PToQFunction p q applyAsQ
ToPFunction<T> T p applyAsP
ToPBiFunction<T,
U>

T,	U p applyAsP

PUnaryOperator p p applyAsP
PBinaryOperator p,	p p applyAsP
PPredicate p boolean test

3.6.3	Implementing	Your	Own	Functional	Interfaces
Ever	so	often,	you	will	be	in	a	situation	where	none	of	the	standard	functional
interfaces	work	for	you.	Then	you	need	to	roll	your	own.
Suppose	you	want	to	fill	an	image	with	color	patterns,	where	the	user	supplies	a
function	yielding	the	color	for	each	pixel.	There	is	no	standard	type	for	a
mapping	(int,	int)	->	Color.	You	could	use
BiFunction<Integer,	Integer,	Color>,	but	that	involves
autoboxing.

In	this	case,	it	makes	sense	to	define	a	new	interface
Click	here	to	view	code	image

@FunctionalInterface

public	interface	PixelFunction	{

Color	apply(int	x,	int	y);

}

	Note

It	is	a	good	idea	to	tag	functional	interfaces	with	the
@FunctionalInterface	annotation.	This	has	two	advantages.
First,	the	compiler	checks	that	the	annotated	entity	is	an	interface	with	a
single	abstract	method.	Second,	the	javadoc	page	includes	a	statement
that	your	interface	is	a	functional	interface.

Now	you	are	ready	to	implement	a	method:
Click	here	to	view	code	image

BufferedImage	createImage(int	width,	int	height,	PixelFunction	f)	{

BufferedImage	image	=	new	BufferedImage(width,	height,

BufferedImage.TYPE_INT_RGB);

for	(int	x	=	0;	x	<	width;	x++)

for	(int	y	=	0;	y	<	height;	y++)	{

Color	color	=	f.apply(x,	y);

image.setRGB(x,	y,	color.getRGB());

}

return	image;

}

To	call	it,	supply	a	lambda	expression	that	yields	a	color	value	for	two	integers:
Click	here	to	view	code	image

BufferedImage	frenchFlag	=	createImage(150,	100,

(x,	y)	->	x	<	50	?	Color.BLUE	:	x	<	100	?	Color.WHITE	:	Color.RED);

3.7	Lambda	Expressions	and	Variable	Scope
In	the	following	sections,	you	will	learn	how	variables	work	inside	lambda
expressions.	This	information	is	somewhat	technical	but	essential	for	working
with	lambda	expressions.

3.7.1	Scope	of	a	Lambda	Expression

The	body	of	a	lambda	expression	has	the	same	scope	as	a	nested	block.	The
same	rules	for	name	conflicts	and	shadowing	apply.	It	is	illegal	to	declare	a
parameter	or	a	local	variable	in	the	lambda	that	has	the	same	name	as	a	local
variable.
Click	here	to	view	code	image

int	first	=	0;

Comparator<String>	comp	=	(first,	second)	->	first.length()	-

second.length();

//	Error:	Variable	first	already	defined

Inside	a	method,	you	can’t	have	two	local	variables	with	the	same	name,
therefore	you	can’t	introduce	such	variables	in	a	lambda	expression	either.
As	another	consequence	of	the	“same	scope”	rule,	the	this	keyword	in	a
lambda	expression	denotes	the	this	parameter	of	the	method	that	creates	the
lambda.	For	example,	consider
Click	here	to	view	code	image

public	class	Application()	{

public	void	doWork()	{

Runnable	runner	=	()	->	{	...;	System.out.println(this.toString());

...	};

...

}

}

The	expression	this.toString()	calls	the	toString	method	of	the
Application	object,	not	the	Runnable	instance.	There	is	nothing	special
about	the	use	of	this	in	a	lambda	expression.	The	scope	of	the	lambda
expression	is	nested	inside	the	doWork	method,	and	this	has	the	same
meaning	anywhere	in	that	method.

3.7.2	Accessing	Variables	from	the	Enclosing	Scope
Often,	you	want	to	access	variables	from	an	enclosing	method	or	class	in	a
lambda	expression.	Consider	this	example:
Click	here	to	view	code	image

public	static	void	repeatMessage(String	text,	int	count)	{

Runnable	r	=	()	->	{

for	(int	i	=	0;	i	<	count;	i++)	{

System.out.println(text);

}

};

new	Thread(r).start();

}

Note	that	the	lambda	expression	accesses	the	parameter	variables	defined	in	the
enclosing	scope,	not	in	the	lambda	expression	itself.
Consider	a	call
Click	here	to	view	code	image

repeatMessage("Hello",	1000);	//	Prints	Hello	1000	times	in	a	separate

thread

Now	look	at	the	variables	count	and	text	inside	the	lambda	expression.	If
you	think	about	it,	something	nonobvious	is	going	on	here.	The	code	of	the
lambda	expression	may	run	long	after	the	call	to	repeatMessage	has
returned	and	the	parameter	variables	are	gone.	How	do	the	text	and	count
variables	stay	around	when	the	lambda	expression	is	ready	to	execute?
To	understand	what	is	happening,	we	need	to	refine	our	understanding	of	a
lambda	expression.	A	lambda	expression	has	three	ingredients:
1.	A	block	of	code
2.	Parameters
3.	Values	for	the	free	variables—that	is,	the	variables	that	are	not	parameters	and
not	defined	inside	the	code

In	our	example,	the	lambda	expression	has	two	free	variables,	text	and
count.	The	data	structure	representing	the	lambda	expression	must	store	the
values	for	these	variables—in	our	case,	"Hello"	and	1000.	We	say	that	these
values	have	been	captured	by	the	lambda	expression.	(It's	an	implementation
detail	how	that	is	done.	For	example,	one	can	translate	a	lambda	expression	into
an	object	with	a	single	method,	so	that	the	values	of	the	free	variables	are	copied
into	instance	variables	of	that	object.)

	Note

The	technical	term	for	a	block	of	code	together	with	the	values	of	free
variables	is	a	closure.	In	Java,	lambda	expressions	are	closures.

As	you	have	seen,	a	lambda	expression	can	capture	the	value	of	a	variable	in	the
enclosing	scope.	To	ensure	that	the	captured	value	is	well	defined,	there	is	an
important	restriction.	In	a	lambda	expression,	you	can	only	reference	variables
whose	value	doesn't	change.	This	is	sometimes	described	by	saying	that	lambda
expressions	capture	values,	not	variables.	For	example,	the	following	is	a
compile-time	error:

Click	here	to	view	code	image

for	(int	i	=	0;	i	<	n;	i++)	{

new	Thread(()	->	System.out.println(i)).start();

//	Error—cannot	capture	i
}

The	lambda	expression	tries	to	capture	i,	but	this	is	not	legal	because	i	changes.
There	is	no	single	value	to	capture.	The	rule	is	that	a	lambda	expression	can	only
access	local	variables	from	an	enclosing	scope	that	are	effectively	final.	An
effectively	final	variable	is	never	modified—it	either	is	or	could	be	declared	as
final.

	Note

The	same	rule	applies	to	variables	captured	by	local	classes	(see	Section
3.9,	“Local	and	Anonymous	Classes,”	page	129).	In	the	past,	the	rule
was	more	draconian	and	required	captured	variables	to	actually	be
declared	final.	This	is	no	longer	the	case.

	Note

The	variable	of	an	enhanced	for	loop	is	effectively	final	since	its	scope
is	a	single	iteration.	The	following	is	perfectly	legal:

Click	here	to	view	code	image

for	(String	arg	:	args)	{

new	Thread(()	->	System.out.println(arg)).start();

//	OK	to	capture	arg
}

A	new	variable	arg	is	created	in	each	iteration	and	assigned	the	next
value	from	the	args	array.	In	contrast,	the	scope	of	the	variable	i	in	the
preceding	example	was	the	entire	loop.

As	a	consequence	of	the	“effectively	final”	rule,	a	lambda	expression	cannot
mutate	any	captured	variables.	For	example,
Click	here	to	view	code	image

public	static	void	repeatMessage(String	text,	int	count,	int	threads)

{

Runnable	r	=	()	->	{

while	(count	>	0)	{

count--;	//	Error:	Can't	mutate	captured	variable

System.out.println(text);

}

};

for	(int	i	=	0;	i	<	threads;	i++)	new	Thread(r).start();

}

This	is	actually	a	good	thing.	As	you	will	see	in	Chapter	10,	if	two	threads
update	count	at	the	same	time,	its	value	is	undefined.

	Note

Don't	count	on	the	compiler	to	catch	all	concurrent	access	errors.	The
prohibition	against	mutation	only	holds	for	local	variables.	If	count	is
an	instance	variable	or	static	variable	of	an	enclosing	class,	then	no	error
is	reported	even	though	the	result	is	just	as	undefined.

	Caution

One	can	circumvent	the	check	for	inappropriate	mutations	by	using	an
array	of	length	1:

Click	here	to	view	code	image

int[]	counter	=	new	int[1];

button.setOnAction(event	->	counter[0]++);

The	counter	variable	is	effectively	final—it	is	never	changed	since	it
always	refers	to	the	same	array,	so	you	can	access	it	in	the	lambda
expression.
Of	course,	code	like	this	is	not	threadsafe.	Except	possibly	for	a	callback
in	a	single-threaded	UI,	this	is	a	terrible	idea.	You	will	see	how	to
implement	a	threadsafe	shared	counter	in	Chapter	10.

3.8	Higher-Order	Functions
In	a	functional	programming	language,	functions	are	first-class	citizens.	Just	like
you	can	pass	numbers	to	methods	and	have	methods	that	produce	numbers,	you
can	have	arguments	and	return	values	that	are	functions.	Functions	that	process
or	return	functions	are	called	higher-order	functions.	This	sounds	abstract,	but	it
is	very	useful	in	practice.	Java	is	not	quite	a	functional	language	because	it	uses

functional	interfaces,	but	the	principle	is	the	same.	In	the	following	sections,	we
will	look	at	some	examples	and	examine	the	higher-order	functions	in	the
Comparator	interface.

3.8.1	Methods	that	Return	Functions
Suppose	sometimes	we	want	to	sort	an	array	of	strings	in	ascending	order	and
other	times	in	descending	order.	We	can	make	a	method	that	produces	the	correct
comparator:
Click	here	to	view	code	image

public	static	Comparator<String>	compareInDirecton(int	direction)	{

return	(x,	y)	->	direction	*	x.compareTo(y);

}

The	call	compareInDirection(1)	yields	an	ascending	comparator,	and	the
call	compareInDirection(-1)	a	descending	comparator.
The	result	can	be	passed	to	another	method	(such	as	Arrays.sort)	that
expects	such	an	interface.
Click	here	to	view	code	image

Arrays.sort(friends,	compareInDirection(-1));

In	general,	don’t	be	shy	to	write	methods	that	produce	functions	(or,	technically,
instances	of	classes	that	implement	a	functional	interface).	This	is	useful	to
generate	custom	functions	that	you	pass	to	methods	with	functional	interfaces.

3.8.2	Methods	That	Modify	Functions
In	the	preceding	section,	you	saw	a	method	that	yields	an	increasing	or
decreasing	string	comparator.	We	can	generalize	this	idea	by	reversing	any
comparator:
Click	here	to	view	code	image

public	static	Comparator<String>	reverse(Comparator<String>	comp)	{

return	(x,	y)	->	comp.compare(y,	x);

}

This	method	operates	on	functions.	It	receives	a	function	and	returns	a	modified
function.	To	get	case-insensitive	descending	order,	use
Click	here	to	view	code	image

reverse(String::compareToIgnoreCase)

	Note

The	Comparator	interface	has	a	default	method	reversed	that
produces	the	reverse	of	a	given	comparator	in	just	this	way.

3.8.3	Comparator	Methods
The	Comparator	interface	has	a	number	of	useful	static	methods	that	are
higher-order	functions	generating	comparators.
The	comparing	method	takes	a	“key	extractor”	function	that	maps	a	type	T	to
a	comparable	type	(such	as	String).	The	function	is	applied	to	the	objects	to
be	compared,	and	the	comparison	is	then	made	on	the	returned	keys.	For
example,	suppose	a	Person	class	has	a	method	getLastName.	Then	you	can
sort	an	array	of	Person	objects	by	last	name	like	this:
Click	here	to	view	code	image

Arrays.sort(people,	Comparator.comparing(Person::getLastName));

You	can	chain	comparators	with	the	thenComparing	method	to	break	ties.
For	example,	sort	an	array	of	people	by	last	name,	then	use	the	first	name	for
people	with	the	same	last	name:
Click	here	to	view	code	image

Arrays.sort(people,	Comparator

.comparing(Person::getLastName)

.thenComparing(Person::getFirstName));

There	are	a	few	variations	of	these	methods.	You	can	specify	a	comparator	to	be
used	for	the	keys	that	the	comparing	and	thenComparing	methods	extract.
For	example,	here	we	sort	people	by	the	length	of	their	names:
Click	here	to	view	code	image

Arrays.sort(people,	Comparator.comparing(Person::getLastName,

(s,	t)	->	s.length()	-	t.length()));

Moreover,	both	the	comparing	and	thenComparing	methods	have	variants
that	avoid	boxing	of	int,	long,	or	double	values.	An	easier	way	of	sorting
by	name	length	would	be
Click	here	to	view	code	image

Arrays.sort(people,	Comparator.comparingInt(p	->

p.getLastName().length()));

If	your	key	function	can	return	null,	you	will	like	the	nullsFirst	and
nullsLast	adapters.	These	static	methods	take	an	existing	comparator	and
modify	it	so	that	it	doesn’t	throw	an	exception	when	encountering	null	values
but	ranks	them	as	smaller	or	larger	than	regular	values.	For	example,	suppose
getMiddleName	returns	a	null	when	a	person	has	no	middle	name.	Then
you	can	use	Comparator.comparing(Person::getMiddleName(),
Comparator.nullsFirst(...)).
The	nullsFirst	method	needs	a	comparator—in	this	case,	one	that	compares
two	strings.	The	naturalOrder	method	makes	a	comparator	for	any	class
implementing	Comparable.	Here	is	the	complete	call	for	sorting	by	potentially
null	middle	names.	I	use	a	static	import	of	java.util.Comparator.*	to
make	the	expression	more	legible.	Note	that	the	type	for	naturalOrder	is
inferred.
Click	here	to	view	code	image

Arrays.sort(people,	comparing(Person::getMiddleName,

nullsFirst(naturalOrder())));

The	static	reverseOrder	method	gives	the	reverse	of	the	natural	order.

3.9	Local	and	Anonymous	Classes
Long	before	there	were	lambda	expressions,	Java	had	a	mechanism	for	concisely
defining	classes	that	implement	an	interface	(functional	or	not).	For	functional
interfaces,	you	should	definitely	use	lambda	expressions,	but	once	in	a	while,
you	may	want	a	concise	form	for	an	interface	that	isn't	functional.	You	will	also
encounter	the	classic	constructs	in	legacy	code.

3.9.1	Local	Classes
You	can	define	a	class	inside	a	method.	Such	a	class	is	called	a	local	class.	You
would	do	this	for	classes	that	are	just	tactical.	This	occurs	often	when	a	class
implements	an	interface	and	the	caller	of	the	method	only	cares	about	the
interface,	not	the	class.
For	example,	consider	a	method
Click	here	to	view	code	image

public	static	IntSequence	randomInts(int	low,	int	high)

that	generates	an	infinite	sequence	of	random	integers	with	the	given	bounds.
Since	IntSequence	is	an	interface,	the	method	must	return	an	object	of	some

class	implementing	that	interface.	The	caller	doesn't	care	about	the	class,	so	it
can	be	declared	inside	the	method:
Click	here	to	view	code	image

private	static	Random	generator	=	new	Random();

public	static	IntSequence	randomInts(int	low,	int	high)	{

class	RandomSequence	implements	IntSequence	{

public	int	next()	{	return	low	+	generator.nextInt(high	-	low	+	1);	}

public	boolean	hasNext()	{	return	true;	}

}

return	new	RandomSequence();

}

	Note

A	local	class	is	not	declared	as	public	or	private	since	it	is	never
accessible	outside	the	method.

There	are	two	advantages	of	making	a	class	local.	First,	its	name	is	hidden	in	the
scope	of	the	method.	Second,	the	methods	of	the	class	can	access	variables	from
the	enclosing	scope,	just	like	the	variables	of	a	lambda	expression.
In	our	example,	the	next	method	captures	three	variables:	low,	high,	and
generator.	If	you	turned	RandomInt	into	a	nested	class,	you	would	have	to
provide	an	explicit	constructor	that	receives	these	values	and	stores	them	in
instance	variables	(see	Exercise	16).

3.9.2	Anonymous	Classes
In	the	example	of	the	preceding	section,	the	name	RandomSequence	was	used
exactly	once:	to	construct	the	return	value.	In	this	case,	you	can	make	the	class
anonymous:
Click	here	to	view	code	image

public	static	IntSequence	randomInts(int	low,	int	high)	{

return	new	IntSequence()	{

public	int	next()	{	return	low	+	generator.nextInt(high	-	low	+	1);	}

public	boolean	hasNext()	{	return	true;	}

}

}

The	expression

new	Interface()	{	methods	}

means:	Define	a	class	implementing	the	interface	that	has	the	given	methods,
and	construct	one	object	of	that	class.

	Note

As	always,	the	()	in	the	new	expression	indicate	the	construction
arguments.	A	default	constructor	of	the	anonymous	class	is	invoked.

Before	Java	had	lambda	expressions,	anonymous	inner	classes	were	the	most
concise	syntax	available	for	providing	runnables,	comparators,	and	other
functional	objects.	You	will	often	see	them	in	legacy	code.
Nowadays,	they	are	only	necessary	when	you	need	to	provide	two	or	more
methods,	as	in	the	preceding	example.	If	the	IntSequence	interface	has	a
default	hasNext	method,	as	in	Exercise	16,	you	can	simply	use	a	lambda
expression:
Click	here	to	view	code	image

public	static	IntSequence	randomInts(int	low,	int	high)	{

return	()	->	low	+	generator.nextInt(high	-	low	+	1);

}

Exercises
1.	Provide	an	interface	Measurable	with	a	method	double
getMeasure()	that	measures	an	object	in	some	way.	Make	Employee
implement	Measurable.	Provide	a	method	double
average(Measurable[]	objects)	that	computes	the	average
measure.	Use	it	to	compute	the	average	salary	of	an	array	of	employees.

2.	Continue	with	the	preceding	exercise	and	provide	a	method	Measurable
largest(Measurable[]	objects).	Use	it	to	find	the	name	of	the
employee	with	the	largest	salary.	Why	do	you	need	a	cast?

3.	What	are	all	the	supertypes	of	String?	Of	Scanner?	Of
ImageOutputStream?	Note	that	each	type	is	its	own	supertype.	A	class	or
interface	without	declared	supertype	has	supertype	Object.

4.	Implement	a	static	of	method	of	the	IntSequence	class	that	yields	a
sequence	with	the	arguments.	For	example,	IntSequence.of(3,	1,	4,
1,	5,	9)	yields	a	sequence	with	six	values.	Extra	credit	if	you	return	an

